MICOL
MACRO

Micol

Systems

Micol Macro™ Assembler
Version 2.01

For the Apple IIGS and Apple Ile with GS upgrade by Micol Systems and
Corpwell Data Systems © 1987 Micol Systems and Corpwell Data Systems.

Micol Systems
9 Lynch Road
Toronto, Ontario
Canada M2] 2V6
(416) 495-6864

LIMIT OF LIABILITY

While every precaution has been made to the validity of the software and its
accompanying manual, Micol Systems and Corpwell Data Systems cannot
assume any responsibility or liability for any damage or loss caused by our
software. It is the responsibility of the user to make the necessary backup for
his/her data and programs.

COPYRIGHT NOTICE

This technical manual and the related software contained on the diskette are
copyrighted materials. All rights reserved. Duplication of any of the above
described materials, for other than personal use of the purchaser, without
express written permission of Micol Systems, is a violation of the copyright
law, and is subject to both civil and criminal prosecution.

Apple, the Apple logo, and ProDOS are registered trademarks of Apple Com-
puter, Inc. Apple IIGS, AppleWorks, ImageWriter, and UniDisk are trade-
marks of Apple Computer, Inc.

Note: The following notice is required by Apple Computer Inc. in licensing
ProDOS 16.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER
EXPRESSED OR IMPLIED, REGARDING THE ENCLOSED COM-
PUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS
FITNESS FOR EACH PARTICULAR PURPOSE. THE EXCLUSION
OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME
STATES. THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.
THIS WARRANTY PROVIDES YOU WITH SPECIFIC LEGAL
RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE
WHICH VARY FROM STATE TO STATE.

PRODOS 16 IS A COPYRIGHTED PROGRAM OF APPLE COM-
PUTER, INC. LICENSED TO MICOL SYSTEMS, CANADA TO DIS-
TRIBUTE FOR USE ONLY IN COMBINATION WITH Micol Macro™.
APPLE SOFTWARE SHALL NOT BE COPIED ONTO ANOTHER

DISKETTE (EXCEPT FOR ARCHIVAL PURPOSES) OR INTO MEM-
ORY UNLESS AS PART OF THE EXECUTION OF Micol Macro™.
WHEN Micol Macro™ HAS COMPLETED EXECUTION, APPLE
SOFTWARE SHALL NOT BE USED IN ANY OTHER PROGRAM.

The macro assembler and Monitor/Shell are copyrighted programs of Micol
Systems Canada. The Corpwell editor is a copyrighted program of Corpwell
Data Systems.

Copyright 1987 by Micol Systems Canada and Corpwell Data Systems.

Tous droits reservés 1987 par Micol Systems Canada et Corpwell Data
Systems.

Published in Canada.

FIRST EDITION
First printing, Aug 1987.

Program and Documentation: Stephen Brunier and Allan Corupe.
Copy Editor: Ronald A. Leroux.

DISK REPLACEMENT POLICY

Our diskettes are professionally copied. However, if the original disk should
prove defective within 30 days of the date of purchase, please return it with
an explanation of what is wrong and a proof of purchase for prompt, free
replacement or repair. If the disk has been physically damaged or if the disk
fails after 90 days of the date of purchase, please include $10.00 U.S. for
replacement or repair.

If failure of the product, in the judgement of Micol Systems Canada, resulted
from accident, abuse, or misapplication of the product, Micol Systems Can-
ada shall have no responsibility to replace or repair the product under the
above terms.

PRODUCT REVISION

Micol Systems Canada reserves the right to make improvements to the prod-
uct described in this manual at any time without notice.

The text file INFO.DOC on the master disk contains the latest information,
about this product (software and reference manual), which could not be
included in the manual by publication time. Load this file into the editor for
up-to-date information.

UPDATE POLICY

Updated version of this software, when available, from Micol System Canada
sells for $15.00 U.S. with adequate proof of purchase and a registration card
on file with us. An additional $10.00 U.S. will be charged if an updated man-
ual is to be included.

P e e e al
= N e]

L |

"

2.

=1

BACKUPS

The software contained on the master diskette you received with this manual
is intended to be used only as a means of delivering the software, not as a
work diskette on which you would do your programming. Use the copy pro-
gram disk that came with your computer to make backups for working copies
of the software. Keep the originals as master disks in a separate place.

We make high quality software at a reasonable price. We heartfully request
that you do not abuse our policy of not copy protecting the Micol Systems’
diskettes.

We do this for the convenience of the purchaser who has paid good money
and should not be hindered by not being able to backup his/her software. Do
make backups of this software for yourself, but do not give or lend them to
others.

We would like to maintain our policy of high quality software at a reasonable
price without copy protecting our diskettes. With your assistance, we will be
able to do so.

g o or

SERVICE POLICY

The registration card entitles you to receive information about updates, new
products, and product support. You will not be eligible for customer support
or be able to have your disk updated or replaced unless you return the card.

This product has been extensively tested both by Micol Systems Canada and
independent programmers. We have done everything we can to remove all
the possible bugs and errors from this product.

If you should have any problems with this package, discover bugs or want to
make any suggestions for improvements, then feel free to write us. Customer
satisfaction is our primary goal. To improve this product, we need feedback
from you. Any reasonable suggestion will be considered for future modifica-
tions and improvements.

Please send all correspondence to:

Micol Systems Canada

9 Lynch Road

Toronto, Ontario

Canada M2] 2V6
Telephone: (416) 495-6864

TABLE OF CONTENTS

P G e n e e e s B e e Baies ok ik

BTt . s b TR st vt L b e o tas e

Higrdwore BEQUITOIMIBIIR | ...« s vesnicsiim s s tismnt iEssasre s nabesa vos

DescTiDHONOL SORWILE o o s s s ah T e, S

SyStern DI DICSCTIDUON oo 5o wnim s me s s AT, Siete B BT aiereraiaa o

1.1
1.2

24
2.2
2.3
2.4
2,3
2.6
2.7
2.8
2.9

1.0 MONITOR/SHELL

Introduction to the Monitor/Shell ...coovviiiiniiiiiiirenrnnrennns

Monitor/Shell COmMMATIAS v s i et e s SN aieie dnislvs vilins

2.0 THE CORPWELL EDITOR

Invoking/Ouitting the BAor oo oiuidis s g o8 wiiidinds eses Losaas
Seteetl INBICHIONE & v vvisns i ei s s o e s s B e sen G e
FORDTRNEIN o s conibonn SRS L0 IR Sl D)
Mownginthe Bileic. .ol o L polel L s SR A 0
BIOCK GO oo oo omialosisimebrivio s s oy i sl ook S SR
BONEINg & FIBNE v i s msna s s Wi o S50 S osaiie
Filing COmMMANAS ... cvu s vivnn maeialoi soiste s o & ook s st aisism b biatn
TTCORIBIRIS . o0 sios voinessio bk Suiabasisls baivia i sivnlve walisiion ol

Configuring to Your Printer & Interfaceccovvvieivninnnnn.

2.10 Hex & Decimal CoOnVerSION ... v eerunr e eesnneereennneneennnseases

2.11 Editor Command Summaryccceveenenennecncacnanenceenss

3.0 THE ASSEMBLER

31 Jeroduction taEhe ASSEBIEr .. .o s vionsma sovemon wne denss soh 27
3.2 Syntax of Assembly Language Fieldsccccovvviiunvennnnn. 30
3.3 - Peeudo/Opetation Bodes:. .. v asisnsss crwsint b s b 36
34 65816 Addressing MOdEs . c.oovvavivsiinis st sinssisiseniives sis 53
15 Assenbler Brot MEBRITE . .. v aniaron ot oes Sttt is sh i 64
3.6 How to Assemble Your Programscc.ovviiiiniiiinnnannnnn. 66
Appendices
Appeadix A Examiple PROBIMIL ... cvvvines cobor s oo ues i v ot Savves 67
Appendix B: Assembler SYNtaxc.vveuiiiiiiiiiiiiiriieriieeneaens 78
Appendix C: Microprocessors Used in Apple Computers................. 79
Appendix D: Reserved Words (Pseudo Ops).. .o oviniorvonessiivesassos 80
Appendix E: Editor Command SUMMBNALY ... cooviorrimsbinsiisiins s sito, 82
Appendix F: Monitor/Shell Command Summaryccvov.... 83
Appendix G: Apple IIGS MOnItor USEEE« s vevivmavibolisn e sionsns 84
Tl OSERIV o i cimriei s st s e e e s o e oy W 87
(777 7. SR e S SN =y T S RS | ", 4 1 e) 93

=il

PREFACE

Micol Systems is pleased to welcome you to the world of assembly language
development for the Apple IIGS and the Apple Ile with GS upgrade. With
this package, you have the ability to create the fastest and most versatile soft-
ware your computer is able to execute.

You will be amazed at the difference in speed between programs you write
with this package and BASIC programs which perform the same function. A
forty time speed increase or better should be the norm. An increase of hun-
dreds of times, although unusual, can be achieved.

Few things in life are free, and assembly language programming is no excep-
tion. While assembly language programs execute far faster than their BASIC
counterparts, they are usually more difficult to write. This package will be a
aid in minimizing this difficulty. The integrated Monitor/Shell, full screen
text editor and automatic relocating macro assembler should be a great assis-
tance in minimizing your programming task. You will find your investment
well worth the money.

Micol Macro™ was conceived to let you make the most of the 65816 chip.
Thus you will be able to write assembly language programs for the entire
series of Apple II computers. We have followed, with few exceptions, the
syntax rules suggested by Eyes and Lichty (Programming the 65816
Microprocessor) for the assembler. In addition, the Apple IIGS Technical Ref-
erence Manual by Michael Fischer contains invaluable information for serious
software development on the Apple IIGS.

- iii -

PREREQUISITES

Before you continue reading this manual, you should know

® How to set up and use your Apple II computer (see the manuals that came
with your system).

® How to use ProDOS to manipulate disk files (see the Apple II System Utili-
ties, the ProDOS User’s Disk Manual or the Apple IIGS System Disk User’s
Guide).

® The assembly language of the 65816 microprocessor.

This manual is not intended as an assembly language tutorial, but rather as a
tutorial on the software contents on the diskettes you received with this pack-
age. Two books we recommend are:

® Eyes, D., and Lichty, R. Programming the 65816: Including the 6502, 65C02
and 65802. New York: Prentice Hill, 1986.

® Fischer, M. Apple IIGS Technical Reference. Berkeley, CA: Osborne
McGraw Hall, 1986.

HARDWARE REQUIREMENTS

To use the Micol Macro™ Assembler, you need one of the following com-
puter systems:

® Apple IIGS with minimum 512K RAM and one of either UniDisk (3.5
inch) micro floppy or (5.25 inch) floppy drives.

® Apple Ile with GS upgrade, minimum 512K RAM and one of either Uni-
Disk (3.5 inch) micro floppy or (5.25 inch) drives.

@ a monitor capable of displaying 80-columns.

® The Micol Macro™ Assembler operates under ProDOS 16 only, which is
supplied on the Micol system disk.

SUGGESTED OPTIONS:

® 3 printer connected to the slot or port 1 of the IIGS or upgraded Ile.
@ two or more disk drives
® a hard disk

® a2 RAM expansion card (a RAM disk can significantly speed up program
development)

IMPORTANT NOTE

If you want to develop assembly language programs for the entire Apple II
series, be forewarned of the different microprocessors used in the different
Apple II computer models. Refer to Appendix C for details.

A FEW WORDS ABOUT OUR
SOFTWARE

Micol Macro™ is an integrated text editor, Monitor/Shell, and self-relocating
macro assembler package. The user creates his/her programs using the full-
screen editor, assembles them using the macro assembler, and communicates
with the system by means of the Monitor/Shell. All this instantly, without
having to wait for the editor or the macro assembler to load.

The files created by the assembler are special Micol load files and can only be
loaded by the loading software supplied with this product. These load files
are better than the BIN files used under ProDOS 8 because they will accept
multiple ORG statements and easily allow the user to create relocatable pro-
grams which will be loaded at the lowest available area of memory or to create
static files which will be loaded at exactly the location the user has specified.
In addition, the user can easily create SYS files which can only be loaded by
ProDOS 8. SYS files must be generated if the software is to be executed on
other than the Apple IIGS.

% 7

SYSTEM DISK DESCRIPTION

SYSTEM DISK DESCRIPTION

HOW TO RUN OUR SOFTWARE

SYSTEM DISKS SUPPLIED

Supplied with this product are two disks, a micro-floppy (3.5 inch) and
a (5.25 inch) floppy disk. Because of the lack of space, the master files
for Micol Macro™ are on the reverse side of the floppy disk.

PROGRAM LOADING

Place the appropriate diskette (either a 3.5 inch disk or a 5.25 inch
floppy disk) with a copy of Micol Macro into the appropriate drive.
Boot the computer, usually by pressing the Apple-CONTROL-Reset
or turning the computer off and back on or from the ProDOS
“QUIT”.

If you are using a 5.25 inch floppy disk drive, when prompted, turn
the disk over, re-insert it back into the drive and press the Return key.
If you have a UniDisk drive, everything will load automatically. The
default prefix will be set to the volume containing this software.

Micol Macro™ operates exclusively under the ProDOS 16 operating
system. Those of you familiar with ProDOS on the Apple Ile and Ilc
(ProDOS 8) will have little difficulty, but there are some important dif-
ferences you must observe.

PRODOS

Contained on the volume directory of the system disk is a file called
ProDOS. Unlike the ProDOS system file under ProDOS 8 for the
older Apple IIs, ProDOS is not the actual operating system, but rather
an operating system loader. The actual operating system is file P16 and
must reside under the subdirectory SYSTEM. If found, ProDOS loads
P16 into memory. ProDOS then looks in a subdirectory of SYSTEM
called SYSTEM.SETUP for the files contained in the subdirectory and

- vii -

SYSTEM DISK DESCRIPTION

executes them. This operation initializes the system. ProDOS then
goes in subdirectory TOOLS and loads these files into memory.

START

The file PRODOS then goes back to the subdirectory SYSTEM and
looks for the file START. This file is the Micol preloader and simply
loads and executes the file SYSTEM.LOADER under the volume
directory (now the default directory). SYSTEM.LOADER is a SYS
type file and resides at $2000 in bank zero.

SYSTEM.LOADER

The file SYSTEM.LOADER is necessary because ProDOS 16, the
operating system cannot directly load MCL files, the load files created
by the Micol Macro™ Assembler. The integrated Monitor/Editor/As-
sembler, the master file, is such a file. It was our feeling that the usual
object module files which ProDOS 16 loader is designed to load were
far too cumbersome. We therefore devised the current system.

SYSTEM.FILE

SYSTEM.FILE searches the volume directory for the file MASTER.
FILE, the integrated Monitor/Editor/Assembler. MASTER.FILE is
loaded and executed. You are now placed into the Monitor/Shell of
Micol Macro™ ready to use the system.

— viii -

SYSTEM DISK DESCRIPTION

MICOL SYSTEM DISK

PRODOS
SYSTEM. LOADER
MASTER. FILE
SYSTEM
P16
START
SYSTEM. SETUP
TOOLS. SETUP
TOOLS
TOOL@21
TOOL@22
TOOLxxx

WORK DISK

The diskette supplied with this package were not intended to be used
as work disks. This is why they are write-protected (but not copy pro-
tected). It is important that you do not use the original disks for pro-
gram development. Make a backup and store the originals in a separate
box. Use the copy for your program development.

LOAD FILES

As long as you are with the Micol Macro™ System, by using the
BRUN or BLOAD commands from the Monitor/Shell, you can easily
load and execute the load files created by the macro assembler. How-
ever, once you leave this system, these files can no longer be executed
directly through the operating system.

To remedy this situation, the file SYSTEM.LOADER together with
the file START are designed to be used as loader files for your software
independently of this system.

MASTER.FILE

Upon Execution, the file SYSTEM.LOADER runs MASTER.FILE
under the default volume directory. SYSTEM.LOADER is a ProDOS
8 SYS file and always loads at $2000 in bank zero. It occupies about

SYSTEM DISK DESCRIPTION

3500 bytes of memory. If left undisturbed, it remains locked by the
Memory Manager, and can be used as an independent loader
program.

MICOL LOADER USAGE

To use this loader, once it is in memory, you simply have to input a
legitimate ProDOS pathname beginning at location $2010 in bank
zero. A legitimate ProDOS pathname consists of the length of the
name as the first entry followed by the ASCII characters which com-
prise the pathname. Be certain you are writing to bank zero (use STA
>$2010,X). Then simply issue a JML $2000 and the loader program
will execute. Note: there are certain addresses in the SYSTEM.
LOADER’s direct page established at initial loading and later required
by the loader. It is therefore the user’s responsibility to maintain the
initial value contained in the direct page register (16 bits in length). In
addition, you must be certain the data bank register modes are set to
your needs within the program you are loading. Do not assume any
default modes.

MONITOR/SHELL 1.1

1.0 MONITOR/SHELL

1.1 INTRODUCTION TO THE MONITOR/SHELL

The MONITOR/SHELL is the control program. Through the Monitor/Shell
you can interface to the operating system, invoke the macro assembler or the
text editor. Think of the Shell as being on the outside with the editor, assem-
bler being on the inside. The MONITOR/SHELL performs the same role
that the command interpreter (file BASIC.system) played under ProDOS 8.
The prompt character — informs you that you are in the Monitor/Shell.

The following keys have special usage. Make use of them as they will greatly
simplify the Monitor/Shell’s usage. The RETURN key will not delete the
characters under and to the right of it as under Applesoft.

The DELETE key

This deletes the character under the cursor, moving the characters fol-
lowing the cursor one place to the left.

<CTRL>R

This will repeat the previous line entered.

<CTRL>S

This will insert a space at the current cursor position, moving every
character following the cursor one position to the right.

<CTRL>X
This cancels the current input.

The 1 and | arrow keys will not function and the left and right arrow keys
will only function within the range of the currently entered line.

1.2 MONITOR/SHELL

1.2 MONITOR/SHELL COMMANDS

ASSM <pathname>

This command will invoke the macro assembler and assemble the file
stipulated as <pathname>. If the file mentioned in <pathname> can-
not be found, you will be issued an error message and returned to the
Monitor/Shell.

Normally, the assembler will append a ‘“.B” to the pathname stipu-
lated and use that pathname as the pathname under which the MCL
file (the Micol load file) will be generated. You can override this default
by specifying a comma “,” followed by another pathname. The assem-
bler will append a “.B” to the second pathname and generate the MCL
file accordingly.

Example:

ASSM SOURCE_FILE
ASSM /RAM6/FILE, /RAM6/NEWFILE

BATCH <pathname>

The Batch command is used to process a batch stream through the
Monitor/Shell. Pathname is the name of a text file currently on line.
The file, created by the text editor, is simply a file of Monitor/Shell
commands (complete with carriage returns) which you wish executed
by the Monitor/Shell. Any Monitor/Shell command except another
batch command, an EDIT command or an ASSM command, is a legiti-
mate entry into this text file. Any line which begins with a semicolon(;)
will be considered a comment. <CTRL>C will terminate the batch
process. Batch is particularly useful to those users who are doing their
development on a RAM disk and wish to set up the system as to their
own requirements.

Note: There is an example batch file to create a system disk in APPEN-
DIX A.

The commands will be displayed as they are executed.

s

MONITOR/SHELL 1.2

BLOAD <pathname>

You can load an MCL file into memory by use of the BLOAD com-
mand. BLOAD will search the specified directory for <pathname>,
and when found, if it is an MCL file, will load it into memory.
BLOAD will inform you at which location it is loading the file. At the
end of the load, you will be prompted to hit the Return key. Upon
entering <RETURN>>, you will be shown the machine language Mon-
itor of the Apple IIGS with all the pertinent registers set according to
the bank in which your code resides.

BRUN <pathname>

BRUN functions exactly as BLOAD except it will cause the program
to execute immediately after pressing the Return key. The program
will begin execution at the location generated by the last ORG state-
ment encountered. In the case of relocatable files, this probably will
not be the address as stipulated by the ORG but an address returned by
the Memory Manager. In this case, the loader will inform you at which
addresses it is loading the software. Hit <RETURN> when prompted
to do so.

Example:

BRUN /RAM6/FILE.B

Note: The pathname stipulated under BLOAD and BRUN must be
exactly as displayed in the directory, complete with .B if necessary.

CATALOG <pathname>

CATALOG and abbreviation CAT may be entered and are identical. If
<pathname> is stipulated, the directory will be taken from the stipu-
lated volume. If <pathname> does not begin with a slash “/”, the
default prefix will be used with the stipulated directory name. If

1.2 MONITOR/SHELL

<pathname> is not mentioned, the directory of the default diskette
will be displayed.

Example:

CAT /RAM6

CATALOG SUBDIR
CAT

CONTROL-Y

If your program BRKS to the GS monitor and you wish to return to the
Micol Macro™ system, simply enter CONTROL-Y followed by a
Return, and, if your program has not altered any of the system code,
you will be returned to the Monitor/Shell.

COPY <pathnamel> TO <pathname2>

COPY will duplicate the file of the first pathname mentioned as that of
the pathname stipulated second.

Example:

COPY /RAM6/FILE TO /RAM7/NEWFILE

CREATE <pathname>

CREATE will create a new directory file under the name stipulated in
the main or sub-directory as indicated by <pathname>.

Example:

CREATE /RAM6/DIRECT

DELETE <pathname>
DELETE is used to erase a file from the directory. The file must be

MONITOR/SHELL 1.2

unlocked and the disk must not be write-protected in order to be
deleted.

Example:

DELETE /RAM6/FILE

EDIT <pathname>

EDIT will invoke the CORPWELL text editor which will in turn load
the file stipulated. The file must be a TXT file to be loaded. If no path-
name is given and you previously had a file in memory, the last edited
file will still be available for editing. (If there was no previous file, the
text buffer will be cleared).

Example:

EDIT
EDIT /RAM6/TXT.FILE

FORMAT <new volume name>

If you wish to initialize a diskette or a RAM disk, then make use of
FORMAT. The initialized device will have the volume name stipu-
lated. Upon entering this command, each online volume will be dis-
played with its volume name, if any, prompting you to format this
device or not. If either the device is accessed which contains the
medium you wish initialized or the volume name appears which needs
to be formatted, enter a “Y”’, otherwise enter a “N”’. Be very careful,
once the “Y” is entered, any previous contents will be destroyed.

HELP

HELP will display the list of the Monitor/Shell commands available
with a brief description.

Example:

HELP

1.2 MONITOR/SHELL

HOME

HOME is used to clear the contents of the screen and place the cursor
at the left corner of the screen.

Example:

HOME

LIST <pathname>

LIST displays the specified text file to the screen for the user to pre-
view it. Only TXT type files will be displayed. Pressing <CTRL>-S
will pause the listing, pressing any key thereafter will restart it. Press-
ing <CTRL>-C will terminate the listing.

Example:

LIST /RAM6/TXT.FILE

LOCK <pathname>

LOCK is used to protect a file from being deleted. If a file is locked, an
asterisk “*” will precede the file name when taking a directory list.

Example:

LOCK /RAM6/FILE

ONLINE
ONLINE is used to determine the current online volumes.
Example:

ONLINE

PREFIX [/volume name/][{directory.name/}] [{etc.}]

PREFIX is used either to determine the default prefix the system is
using or to set a different default prefix.

If <pathname> is preceded by a slash “/”, it is assumed the pathname is

1

MONITOR/SHELL 1.2

fully qualified. If <pathname> is not preceded by a slash “/”, the default
prefix will be used in front of the filename stipulated. In both cases, the sys-
tem will verify that the stipulated prefix is currently an online volume. If
not, the previous default prefix will remain in effect. If no pathname is sti-
pulated, the current default prefix will be displayed.

Example:

PREFIX
PREFIX DIRECT/
PREFIX /RAM6/

QUIT

QUIT is used to terminate Micol Macro™ and ‘warm boot’ the system.
You will first be prompted to make certain this was your intention. If
“N” is entered, this command will be ignored. If “Y” is entered, con-
trol will be turned over to the operating system which will prompt you
to boot the system, execute the START program or enter a new path-
name. Once you have entered “Y”’, without rebooting the Micol mas-
ter disk, you cannot return to this system.

Example:

User: QUIT
Computer: ARE YOU CERTAIN YOU WISH TO QUIT (Y/N) ?
User: Y

RENAME <pathnamel> TO <pathname2>

RENAME is used to rename a file, directory file or volume name. That
means, by use of this command, you can even change the directory
under which the specified file resides. <pathnamel> must be
unlocked and <pathname2> must not already exist.

Example:

RENAME /RAM6/FILE TO /RAM6/NEWFILE

UNLOCK <pathname>
UNLOCK is the opposite of LOCK. It will unlock a file so that it may

-

1.2

MONITOR/SHELL

be deleted or renamed. A space will precede the file name when the
appropriate directory is displayed.

Example:

UNLOCK /RAM6/FILE

THE CORPWELL EDITOR 2.1

2.0 THE CORPWELL EDITOR

2.1 INVOKING/QUITTING THE EDITOR

To invoke the text editor enter “EDIT” or “EDIT” <pathname> at the
Monitor/Shell level. The Corpwell Editor is always available for use since it
resides in memory with the assembler/monitor. The editor has various com-
mands that facilitate the entry and revision of assembly language source code.
The commands make this editor easy to use.

QUIT TO THE SHELL (OPTION - Q)

To quit the editor and return to the Shell, key OPTION-Q (or
CLOSED-APPLE-Q see page 12 if you have a APPLE 11e/GS retrofit).
If you made any change to your text file in memory, you will be
prompted as to whether or not you wish to save the contents of the text
buffer. If you respond (Y), you will be prompted for the filename. The
file will be saved and the Monitor/Shell will prompt on the screen.

2.2 THE CORPWELL EDITOR

2.2 SCREEN INDICATORS

When the Editor is in place, you will see an inverse bar on the top of
the screen. (See Figure 1). Among other functions, this line displays
the Corpwell Data Systems copyright notice. The second line displays
a ruler-like scale. Following the scale is the text display area. The
screen displays twenty-one 80-character text lines. The bottom inverse
line gives information about the position of the cursor, the amount of
memory space left, the name of the file presently loaded in the text
buffer and real time clock.

Figure 1.

.START OF PROGRAM (c) CORPWELL DATA SYSTEMS

-------- T RON. R PO S [P R |

DELAY UNTIL KEYBOARD IS PRESSED

i
DELAY PHA

Més

STA >STROBE
LABEL LDA >KEYBOARD

BPL LABBK

M16

PLA

RTS

;3 PRINT A STRING ADDRESS IN CURRENT BANK
; IS PASSED IN THE ACCUMUULATOR. THE STRING MUST
; TERMINATE WITH A ZERO (#).

WRITE_STRING STA DP_LOC
LDY #4

LABEL LDA (DP_LOC),Y
AND #8FF

LLINECOL.. MYFILE 6/21/87 11:07:14 PM

- 10 -

THE CORPWELL EDITOR 2.2

TOP LINE

The right of the top screen line shows what command is in effect. This
line also serves for input prompts from the editor.

SCALE (Ruler)

The second screen line displays a ruler-like scale. This can be used for
alignment sensitive input or to speed position counting.

BOTTOM LINE

The bottom line contains the indicators about the text file you are
working on.

LINE COUNTER

This count represents the cursor’s current line position in the text
buffer. It is affected by the 1 and | cursor movements as well as
scrolling and goto line functions.

COLUMN COUNTER

Moving the cursor left or right causes the column counter to increase or
decrease between 1 and 80.

MEMORY AVAILABLE

This integer percentage value indicates how much space remains in the
text buffer.

FILENAME INDICATOR

This area contains a file name only after you load a file into the text
buffer. This filename display remains until you save the file or clear the
text buffer.

e

2.2 THE CORPWELL EDITOR

REAL TIME CLOCK

The real time clock shows the GS clock’s date and time on the screen.
The format is determined by the GS CONTROL Panel. When a file is
saved, the date and time are automatically stamped on the file’s direc-
tory information by ProDOS.

—Fi=

THE CORPWELL EDITOR 2.3

2.3 EDITOR BASICS

GETTING HELP (OPTION - ?)

The editor help screen displays which keys are used for commands. To
see the Help display, press (APPLE)-? or OPTION-?. They both func-
tion the same way.

APPLE AND OPTION KEYS

On a standard Apple IIGS, the CLOSED-APPLE is replaced with the
OPTION key.

Note: If your Apple IIGS is installed in a beige-colored Apple Ile retro-
fit, you will have to use the CLOSED-APPLE key for the OPTION
key. Newer, platinum Apple Ile computers have a keyboard identical
to the Apple IIGS.

ESCAPE KEY

To cancel any command in effect press escape. The escape key will not
terminate a disk operation once it is in progress.

RETURN KEY

The CORPWELL EDITOR’S Return key functions much like the one
of a typewriter. When the key is pressed, it places a Return symbol on
the screen wherever the cursor was. The cursor then moves down to
the left end of the next line of the screen. The Return key, like most of
the function keys, also repeats if held down.

Note: An assembly line must be terminated by the Return key or the
assembler will think the line continues after the screen line.

INSERT/OVERSTRIKE MODE (OPTION - E)

To set the edit mode, press OPTION-E. This toggles the insert/over-
strike mode (overstrike is typing over existing characters without

-3 =

2.3 THE CORPWELL EDITOR

inserting) from what it was previously. The default setting is Insert.
Insert mode is indicated by a solid flashing cursor. Overstrike mode is
shown by a flashing underscore.

DELETE CHARACTER

To delete single characters, press the DELETE key. One character
will be erased and the line will adjust itself.

.

THE CORPWELL EDITOR 2.4

2.4 MOVING IN THE FILE

CURSOR CONTROLS (] | —<)

All cursor keys are functional. Pressing one of these keys once moves
the cursor in the indicated direction. If one of the keys is held down,
the cursor will quickly move in the direction indicated on the key. The
speed and delay at which the cursor keys repeat can be regulated by the
GS CONTROL Panel.

SCROLLING (1)or ()

When the cursor is moved T or | , eventually you will reach the top or
bottom of the display. When the cursor reaches the bottom, the file
scrolls up. When the cursor reaches the top, the file scrolls down. The
limits are TOF (top of file) and BOF (bottom of file).

PAGE SCROLLING (OPTION - 1) or (OPTION - |)

Hold the OPTION and Down-Arrow key to scroll the display up one
page. Alternatively, OPTION and the Up-Arrow key will scroll the
text file down one screen page.

Note: you may move quickly backward or forward through a file with
these commands.

GOTO LINE (OPTION - G)

To move to a specific line within your file, use the GOTO LINE com-
mand. Press OPTION-G. The top line will then prompt you for input.
Give a screen line number and press Return. The line you select will be
displayed on the top display line. This is a good command to use to
correct errors flagged by the assembler.

Note: The Editor will GOTO a line even if the line called for is past the
EOF (end of file).

=35

2.4 THE CORPWELL EDITOR

START OF FILE (OPTION - 1)
To move to the start of the file, type OPTION-1.

END OF FILE (OPTION - 9)
To move to the END of the file, type OPTION-9.

TABBING

To tab, simply press the Tab key when you wish the cursor to move
out to the next tab position. When you tab at the largest tab position,
the cursor is moved to the first tab position on the new line. This fea-
ture is ideal for aligning the different assembly language fields.

SETTING TABS (OPTION - TAB)

You may set a maximum of 6 tabulations. To set tabs, simply press
OPTION-TAB. This will display the present tab positions. They are
indicated by down arrows. To set or delete tabs, move to the tab posi-
tion required using the left or right cursor key, and, noting the screen
rule for column position, press the space bar. A previously defined tab
will be turned off. Otherwise, a tab will be set. If more than 6 tab defi-
nitions are set they will be ignored. Press Return to save your new tab
selections.

DEFAULT TABS
Default tab settings are at 1, 15, 20 and 35.

= 16 =

THE CORPWELL EDITOR 25

2.5 BLOCK COMMANDS

COPY BLOCK (OPTION - C)

To copy a block of text, press OPTION-C. Then continue to press the

1 or | arrow key to “mark” the lines you wish to copy. The lines to
be copied will be highlighted. Press the Return key once to complete
the block mark. Move the cursor to where you want the marked text to
be copied using the 1 or | arrow keys or page scrolling. Press Return
a second time. The marked text is now copied after the line the cursor
is on.

DELETE BLOCK (OPTION - D)

To delete a block of text, press OPTION-D. Then press the 1 or |
arrow key to “mark” the lines you wish to delete. Press Return. This
will delete all the lines highlighted. The text file will be refitted.

Ensure the validity of the Delete request before executing it (by press-
ing the Return key). There is no facility to recover a delete once com-
pleted. You can nullify the delete before execution by pressing Escape.

MOVE BLOCK (OPTION - M)

To move a block of text, press OPTION-M. Then press the 1 or |
arrow key to “mark” the lines you wish to move. Press the Return key
once to complete the block mark. Move the cursor to the position you
want the highlighted text to be moved to using the 1 or | arrow keys
or page scrolling. Press Return again and the marked text will be
moved after the line the cursor is on.

=37 -

2.6

THE CORPWELL EDITOR

2.6 REPLACING & FINDING

FIND STRING (OPTION - F)

To find a string in the text buffer, press OPTION-F. The top inverse
editor line will prompt you for a search string. You may enter up to 64
characters for a search argument. Press Return to execute.

If the search argument is found, it is shown in inverse video in the cen-
tre of the screen. Press the addition symbol (+) to find the next occur-
rence or the subtract symbol (-) to locate the previous one. If you press
any key other than (+) or (-), the find sequence will end.

If the argument you are searching for is not found, a NOT FOUND
message will be displayed.

SEARCH & REPLACE (OPTION - R)

To search and replace a string, press OPTION-R. The top line prompt
will request whether your search is to be (M)anual or (A)utomatic.
Only A, M, or Escape are legal.

You are then prompted for the search string. Enter up to 64 characters
followed by a Return.

A third prompt will request a replacement string. Enter up to 64 char-
acters followed by a Return.

(M)anual S & R - If you select manual the found string will be shown
in the center of the screen in inverse video. If you wish to replace it,
press (Y), if not respond (N). You may press the ESCAPE key at any
point to cancel a manual search and replace.

(A)utomatic S & R - If you select Automatic the editor will search and
replace the string quickly without operator intervention.

Not Found - If the string you are searching for is not located in the file
a Not Found message is displayed. Press any key to return to command
mode.

=18 -

THE CORPWELL EDITOR 2.7

2.7 FILING COMMANDS

CLEARING THE TEXT BUFFER (OPTION - N)

To clear the text buffer, press OPTION-N. You are prompted for con-
firmation. If you respond (Y)es the text buffer will be cleared.

LOAD FILE (OPTION - L)

To load a ProDOS text file into the editor, press OPTION-L. This will
bring up the top prompt line allowing a 64 character pathname. Press
Return to load the file. Loading a file into memory clears any previous
data in the text buffer.

After the file is loaded, the editor will display 21 lines starting from line
1. The line and column counters will display 1. The percentage avail-
able value will show how much buffer space is free after the text file is
loaded. The filename is shown on the bottom line to the left of the
clock display.

If you attempt to load a new file after you have made changes to a file
in memory, the editor will prompt as to whether or not you wish to
save the file in memory before loading a new file.

Note: If you are attempting to load a file larger than the text buffer can
hold, the file will be truncated.

SAVE FILE (OPTION - §)

To save the contents of the text buffer as a ProDOS text file, type
OPTION-S. The prompt line will appear displaying the current file
name (if any) Modify the filename, if necessary, and press Return.
Your file is saved to the pathname specified. If you save to an existing
pathname, that pathname will be deleted first, and then the new file
will be created.

Note: The assembler assembles the file from disk irrespective of the
file in the editor text buffer, so be certain to make use of this com-
mand before you invoke the assembler.

- R

2.7 THE CORPWELL EDITOR

INSERT FILE (OPTION - I)

To insert/merge another ProDOS file into an existing text file already
loaded, follow this procedure. Move the Cursor to the line before the
position you wish the other file to be inserted. Press OPTION - I and
you will be prompted for a file name.

Specify the pathname and press Return. The text starting on the line
after the current cursor position will be moved to the end of the text
buffer. The new text from the insert/merge file will fill the buffer until
it reaches the text that is now at the end of the text buffer. If the insert/
merge file is larger than the space available the overflow text will be
truncated.

DISPLAY EOF MARKER (OPTION - Z)

The last line of text may not be the actual end of file position. To dis-
play the EOF mark, press OPTION-Z.

s B i

THE CORPWELL EDITOR 2.8

2.8 PRINT COMMANDS

Note: Make sure your printer is turned on, is on line and has paper
loaded.

PRINT LINE RANGE (OPTION - P)

To output a range of lines to your printer, press OPTION-P. The
prompt line will ask for a print range. Enter the print range in the for-
mat (startline number — endline number), separating the first and sec-
ond line numbers with a hyphen. Press the Return key to initiate the
printout. e.g. 100-1201.

PRINT WINDOW (OPTION - W)

To print the current text window, type OPTION-W. This command
can be useful when you want to have a quick printout of the present
screen display.

PAUSE PRINT (OPTION - S) or <CTRL>S

To pause output to the printer, press OPTION-S. To resume output to
the printer press any key.

CANCEL PRINTOUT (ESCAPE) or <CTRL>C

To cancel the printout in effect press ESCAPE. After a cancel you will
be returned to the EDITOR command level.

3

29 THE CORPWELL EDITOR

2.9 EDITOR/PRINTER CONFIGURATIONS

CONFIGURING TO YOUR PRINTER & INTERFACE

The APPLE IIGS has a user control panel that allows the user to cus-
tomize hardware and software options, because there are so many dif-
ferent printers, printer interfaces and print firmware in the APPLE
market place. How many characters should we allow on a line before
we force a return? Should we even force a return? Likewise, should the
software generate a LINE FEED after a return is sent to the printer?

To solve these problems we decided to utilize the GS control panel set-
tings for both the number of characters allowed on a print line before a
return line feed is forced, and whether or not a line feed is generated
after the return. Consult your GS manual for detailed control panel
usage. It should be noted here that you may enter the control panel
from the SHELL or the EDITOR, make changes to the control panel
and then return to the SHELL/EDITOR intact without rebooting.
These control panel parameters will work with a printer I/O card or
with the internal GS printer port in the same way. GS control panel
Printer options other than LINE LENGTH and ADD LINE FEEDS
will not effect the printout.

PRINTER LINE LENGTH

This is used to control the number of characters allowed on a printed
line. The possible options are 40, 72, 80, 132 and unlimited. To set this
option enter the GS control panel by entering APPLE-CNTL-ES-
CAPE (see your GS user manual for detailed instructions on control
panel usage). In the control panel select printer options. Modify the
line length indicator to one of the above selections mentioned. Exit the
control panel to return back to the SHELL/EDITOR uninterrupted.

ADD LINE FEED

Most printers and interface cards allow the user the ability to add one
or no line feeds to the return sequence. We felt it wise to give the
option of adding a line feed to the returns. To set this option, enter the

il

THE CORPWELL EDITOR 2.9

GS control panel by keying APPLE-CNTL-ESCAPE (see your GS
user manual for detailed instructions on control panel usage). Select
the printer options and change the add line feed to “YES” or “NO”
depending on your specific printout needs.

Note: These printer options will also effect the printer output of the
assembler.

-2 =

2.10 THE CORPWELL EDITOR

2.10 HEX & DECIMAL CONVERSION

CONVERT DECIMAL => HEX (OPTION - H)

To convert a decimal number to hex, press OPTION-H. The com-
mand line will prompt you for input. Enter the decimal number that is
to be converted to hexadecimal and press the Return key. Only valid
numeric characters will be allowed. Do not exceed the number 4,294,
967,296. Press any key to to continue editing.

CONVERT HEX => DECIMAL (OPTION - H)

To convert a hexadecimal number to decimal, press OPTION-H. The
command line will prompt you for input. Precede the hex number with
a $ (dollar sign) to indicate that the input is in hexadecimal format,
then press Return. Only valid alphanumeric hexadecimal characters

will be allowed. Do not exceed the value SFFFFFFFF. Press any key
to restore the display.

Note: The $ (dollar sign) is what differentiates between either HEX or
DECIMAL input to the number converter.

=3 -

THE CORPWELL EDITOR 2.10

EDITOR COMMAND SUMMARY

Basic Editing
Hold down the OPTION key and press the desired key.

? - Editor Help
E - Insert/Overstrike (toggles on/off)

Moving in the File

G - Goto Line

1 - Start of file

9 - End of File

1 - Page Scroll Up (1 page forward)

| - Page Scroll Down (1 page backward)
TAB - Set Tabs

Block Commands

C - Copy Block
D - Delete Block
M - Move Block

Replacing & Finding

F - Find String
R - Search & Replace

— 25 =

2.10 THE CORPWELL EDITOR

Filing Commands

L - Load File

S - Save File

I - Insert/Merge

Q - Quit to the Shell

Z - Display End of File Marker

N - Clear Buffer

Printing Commands

P - Print Line Range
W - Print Window

Miscellaneous Commands

H - Convert Decimal to Hex (toggle)

P

THE ASSEMBLER 3.1

3.0 THE ASSEMBLER

3.1 INTRODUCTION TO THE ASSEMBLER

Full featured automatic relocating macro assembler

How to execute: from the Monitor/Shell, enter ASSM <pathname> or
ASSM <source pathname>,<destination pathname> and the assembler will
be invoked and assemble source file <pathname> contained on line.

The Micol Macro™ assembler is a full assembler, which reads as input a text
file created under the text file editor, and writes as output a static, relocatable
load file (type $F1 or MCL) or ProDOS SYS files (type $FF) which can later
be loaded and executed by the computer.

The assembler can send listings to the screen or printer, chain and insert files,
get a symbol table to dump to the screen or printer and much more. Please
refer to the section on pseudo operation codes for details.

The Micol Macro™ assembler is a two pass assembler. During pass 1, the
source code is read from disk and the symbol table is built. All labels are
given an address and stored in the computer’s memory. You can easily gauge
the progress of the process because 1’s are sent to the screen every 20 lines of
code. During pass 2, the actual code is generated. If the LST or PRI pseudo
operation is in effect, the line numbers, hexadecimal code generated by the
assembler and text line will be displayed, and after the assemble is finished,
the symbol table will be displayed.

During either pass, the assemble may be stopped by pressing the letter “C”.
During pass 2, you may pause the assembly to see the listing by pressing the
letter “S”. Pressing any key except “C” will start it again.

Relocatable Load Files

By proper use of the ORG pseudo operation code, as well as other pseudo
operation codes and operand syntax, it is quite easy to create load files which

S 7

3.1 THE ASSEMBLER

are relocatable; that means programs that can reside anywhere within a bank
The master file containing the text editor, macro assembler and Monitor/
Shell is such a file.

In order to allow a program to be relocatable within a memory bank, it is
necessary to modify the absolute addresses within the program. For reloca-
tion purposes, an absolute address is defined as any address contained within
the program itself. If an address falls between the beginning of the program
(the ORG statement) and the last address in the program, the address is con-
sidered absolute and must be relocated. This can be overridden by placing an
underscore (_) as the first character of the label which is described later in
this manual.

When the assembler encounters an address in the operand field, it first deter-
mines whether this address is absolute or not. If it is absolute, the assembler
determines whether the user wishes not to relocate this address. The user can
control this by careful selection of the pseudo operation codes or by use of
certain syntax within the operand field. This topic will be discussed within
the appropriate sections which follow.

When passing an immediate value (for example LDA #$12FF), it is assumed
the value should not be altered. However, there are times when you are pass-
ing an address within your program which may need to be altered. If the
instruction program contains either a “>" (for least significant byte(s)) or a
“<” (for most significant byte) following the “#’ for immediate addressing,
and the value falls within the absolute range, then it will have its value altered
accordingly.

Before the system loader loads a relocatable file, it requests from the Memory
Manager the first available memory space large enough to hold this code. If
you have generated a static load file, and the memory manager determines
that all or part of this space is reserved, a MEMORY FULL error will be
issued. Primarily for this reason, the use of relocatable load files is the
method recommended both by Apple Computer, Inc. and Micol Systems.
The only disadvantage to relocatable load files is that they are somewhat lar-
ger than their static counterparts and therefore require more disk space and
more time to load.

However, during development, the user may wish to have fixed addresses

- -

THE ASSEMBLER 3.1

within his/her code, to easily determine where BRKs should be set or for
other reasons. It is therefore possible to easily create load files which will
load at a fixed address; no alteration will be made in the absolute addresses.
The system loader also recognizes such files, but will always request the
required memory from the Memory Manager before loading this file. But
remember, if this memory is already occupied, the user will receive a mem-
ory full error and he/she will have to set a new address for his/her program
and reassemble the source file.

Using the Memory Manager

Within the user’s program itself, there are two possible ways to allocate mem-
ory for data storage, etc.

The first, and easiest method, is by the use of the RES pseudo operation
code. RES will reserve the number of bytes requested within the operand
field within the program space. This method is quite satisfactory for relatively
small amounts of memory. However, as a load file cannot be greater than one
bank of memory (64 kilobytes), this method has serious limitations (when
writing a text editor for example).

For large amounts of memory or memory which must reside in an area of
memory other than the one in which the code resides, the user must make use
of the Memory Manager. The Memory Manager is an Apple IIGS ROM tool
which can be used to allocate, deallocate, and protect memory as the user
deems necessary. It’s use if fully explained in the Apple [IGS Technical Refer-
ence Manual by Michael Fischer as well as other references.

Appendix A contains an example program which makes use of the memory
manager as well as other features which the user will probably need to know.
It is advised you study this program in detail.

-39 -

3.2 THE ASSEMBLER

3.2 SYNTAX OF ASSEMBLY LANGUAGE FIELDS

Comment line

Any line which begins with a semi-colon (;) in column one will be assumed to
be a comment. No code will be generated from such a line, but it is recom-
mended you make use of comments, as it will greatly aid in later maintenance
of your code.

Example:

;This is a comment line

Assembly code line - 65816, 65C02/6502

This line has of a maximum of four fields: the label, mnemonic/op code or
pseudo op code, address, and comment.

Example:

[label] mnemonic/operation [operand] [COMMENT]
[label] pseudo operation code [operand] [COMMENT]

These fields are described below.

1. Label field.

The label field must begin in column one and should start with a letter of the
alphabet. It may contain alphanumeric characters including the underscore
and be of any length. The label field is optional. A space must appear
between a label and the mnemonic/operation or pseudo op code field.

If you have specified a label within an absolute address and you do not wish
this address to be relocated within the load file (an address in bank zero such
as $C000, for example), simply have the label begin with an underscore (_).
The address will remain constant throughout the assemble.

An op code or pseudo op code must follow the label otherwise an error arises.

-0 -

—

THE ASSEMBLER ‘ 3.2

If you need a dummy label, use ADDRESS EQU *. Labels should not be
an A, X, Y op code, a pseudo op code, or the reserved words LABEL,
LABFW or LABBK.

Automatic Label Generation

The Micol Macro™ assembler is also capable of generating and accepting
automatic labels. In order to use this feature, simply use the reserved word
LABEL as a label. The assembler will generate successive invisible labels
each time LABEL is referenced. To reference this automatically generated
label, the user must make use of the reserved words LABFW and LABBK
within the operand field. These label references must not contain any other
characters within their operand field. To reference a previous LABEL, use
LABBK (for label backward). To reference a successive label, use LABFW
(for label forward). Never try to reference a point either before a previous
LABEL or after a subsequent LABEL. You may have as many LABEL state-
ments and references within your program as you require.

Be careful when using automatic labels. This feature should only be used for
branches which are only a few lines away, as errors can otherwise arise.

Example:

STZ NUMBER
LABEL INC NUMBER
LDA NUMBER
CMP #3$00FF
BEQ LABFW
BRA LABBK
LABEL BRK S$AQ

The BEQ LABFW will branch to the last line when executed. The BRA will
branch to increment NUMBER when taken.

Needless to say, you should never use LABEL, LABBK, or LABFW as nor-
mal labels.

e A =

3.2 THE ASSEMBLER

Local and Global Labels

The Micol Macro™ assembler lets you declare local and global labels in your
source code. By default, all labels within your program are global. That is, all
labels can be referenced by the entire program. If you wish, you can declare
an area of your program to be local. That means that all declarations of labels
in that area of code will be exclusive to that same area of code. Two labels
may look the same if one is global and the other local, but they will probably
have different addresses. If a label is used locally, it will be identified in the
symbol table with a “#”* before the label name.

A portion of your code is declared to be local if it is enclosed in “<<<" and
“>>>” in the op code fields. The assembler first assumes a label is used
locally and searches the symbol table for a local label. If this search fails, it
searches a second time for a global label. A problem can arise if the local label
was entered incorrectly. Be careful. If neither search is successful, the assem-
bler generates an error.

Each set of “<<<” and “>>>" constitutes its own separate local area, hav-
ing no relation to the previous local area. You can have a maximum of 127
local areas. It is not a good idea to use automatic labels within a local label
area as potential errors may be difficult to determine.

Example:

couT EQU SFDED

BRA MAIN Will branch to last MAIN
STRING STR 'This is a string'

BYT @

<<<

;Now in the local label area

couT EQU $FDF@
LDY #0@

MAIN LDA STRING,Y Global label used in this CASE
BEQ *+8
JSR COUT Will use $FDF@ as the address
INY
BNE MAIN
>>>

;Now in the global area

MAIN LDY #¢ Not the same main as before

Note: This previous example program is not intended as a guide on good pro-

.

THE ASSEMBLER 3.2

gramming techniques, but merely as an example on local and global label
usage.

2. Mnemonic/Op Code and Pseudo Op Field.

The op code field must follow the label with a space between these fields. If
no label is used, the op code must not be in column one. All op codes and
pseudo op codes are three characters long.

With the exception of DEC A and INC A, which are DEA and INA respec-
tively, the macro assembler accepts all 65816 op codes as detailed in the Eyes/
Lichty Programming The 65816 Microprocessor manual. (Please note that the
JMP and JSR op codes cannot be used with long addresses. If you need to
jump to subroutine or jump to an address greater than $FFFF, you must use
JSL and JML respectively. JMP and JSR, if used in this instance, will return
an error).

The pseudo operation codes are described in Section 3.3.

3. Address field

At least one space must appear between the op code and the address field.
The 6502 uses 14 addressing modes, the 65C02 uses 16 addressing modes,
and the 65816 uses 25 addressing modes. The Micol Macro assembler accepts
all these addressing modes.

Values within the address field may consist of:

Direct page label
Absolute label
Long address label
Direct page address

Absolute address

- 3% ~

3.2 THE ASSEMBLER

Long address

Special characters consisting of:

program counter at beginning of instruction

least significant byte(s) or forced long addressing designator
most significant byte(s) or forced direct page designator
denotes the following value in hexadecimal

denotes the following value in binary

denotes the following value in octal

denotes the following value in decimal (default)

+ add the following number to the previous result

- subtract the following number from the previous result
(period) multiply the following number by the previous result

@'S?‘-ﬁﬂ/\v *

/ divide the previous result by the following number

specifies immediate addressing

i instructs the assembler to interpret the string as
APPLE modified ASCII.

! forced absolute addressing designator

The > and < characters require special mention when used with immediate
addressing. If in 8 bit mode, the > will take the least significant byte of the
address passed and the < will take the most significant byte of the address. If
in 16 bit mode, the > will return byte one and byte two of the address and the
< will return byte two and byte three of the address.

If neither a < or a > follow the # specifying an immediate address, the
assembler assumes the immediate value is a constant. If either a < or a > fol-
low the # specifying immediate addressing, the assembler will assume the fol-
lowing value is an address and will alter it according to the relocation rules
specified earlier.

If you are using an absolute address with PEA instruction and are generating
a relocatable load file, be certain to use > and < if you wish the address to be
relocated. Using a # will stop any possible relocation.

Note: The direction of the < and > in immediate addressing mode is reversed
from the one stipulated by the Eyes/Lichty Programming the 65816
microprocessor.

-

THE ASSEMBLER 3.2

4. Comment field

Following any completed line of code, you may place an optional comment. It
will have no influence on the code which is generated. There must be at least
one space between the previous field and the comment.

Example:

ADDR DEY This is a comment
LDA ($FF),Y This is another comment
PHP

- 35 -

3.3 THE ASSEMBLER

3.3 PSEUDO-OPERATION CODES

Pseudo op codes are used as instructions to the assembler. Some pseudo ops
generate code, others are simply instructions to the assembler, others do
both. Efficient use of these codes can make the coder’s job much easier.

The pseudo operation codes fall into separate categories according to their
function and usage. For this reason, we will describe them within separate
categories. Be certain you read this entire section before you begin your
programming.

The pseudo op codes will be described below in this order: name of the
pseudo op, the description, and if necessary, an example. Each description
will be followed by an error condition, if appropriate.

Pseudo Operation Codes That Effect The Symbol Table

While all operation codes can be used to effect entries into the symbol table
by placing a label starting at the first column, the following pseudo operation
codes are primarily intended for this purpose.

EQU

Assign the label the same value as the operand. It equates them. The
operand may be a binary, octal, decimal, hexadecimal number or a
label. Simple mathematics may also be used. Values may range from $0
to SFFFFFF. If a label is used, it must have been previously declared.
Although it is not an error, an EQU statement without a label on the
left side is worthless.

Example:
ADDRESS EQU $1234

ERROR CONDITION: It is recommended you place the EQU statements at
the beginning of your program. They may be placed anywhere in the code;
however, if an equate with a value of less than $0100 or a value greater than
SFFFF is declared after it is referenced, subsequent addresses of labels will
probably be wrong (during pass one, the assembler assumes a 3 byte opera-

. e

THE ASSEMBLER 3.3

tion for as yet unknown addresses). A direct page address in this instance
will throw the program counter in the assembler off.

RES <number>

Reserves a number of bytes. For a fixed address file, the assembler
generates <number> NOP’s ($EA) and for a relocatable file the
assembler simply generates a two byte number which will later be writ-
ten as <number> NOPs. The number may be in any notation, even a
label. It is very useful for defining relatively small variable locations.

Example:

MEMORY RES 5

Pseudo Operation Codes Generating Constant Values

The following pseudo op codes will place specified bytes of information into
the object file at assembly time. You must be careful with some of these
instructions as some will generate code which should be used with relocatable
files, while others simply generate the stipulated values.

ABS

ABS generates a two byte value for each label in 65816 addressing for-
mat (i.e. LSB, MSB order). ABS is intended to be used to define tables
of absolute addresses which will later be used within the user’s pro-
gram. Each label within the operand field of ABS should be an address
declared within your program. ABS differs from WOR in that the
value(s) within the operand field are assumed to be absolute addresses
and will have these value(s) altered in the case of a relocatable load file
being generated by the assembler.

Example:

TABLE ABS ADDRESS1, ADDRESS2, ADDRESS3

-3

33

THE ASSEMBLER

ASC ‘a string’

ASC functions almost exactly as STR described later. ASC will gener-
ate the proper ASCII values for each character in the text string to be
generated except for the last character. This means each character
except the last one will have its high order bit turned off (0). The last
character has its high order bit on (1). This makes it easy to determine
the last character of the string by finding whether the value loaded is
minus or not (the last character will be minus).

The string in the operand field must begin and end with a single quotation

mark.

BYT

Example 1:

STRING ASC 'This is a text string'

Example 2:

TOOLS EQU $E10000
ORG $100¢
NAT
M@8 8 Bit accumulator
I16 16 Bit index registers
BRA LABFW
STRING ASC 'SEND THIS TEXT STRING OUT'
LABEL LDY #0
LABEL. LDA STRING,Y
PHY
PHA
LDX #3$180C Call char out from text tools
JSL TOOLS
PLY
LDA STRING,Y
BMI LABFW
INY
BNE LABBK
LABEL JSR CROUT

Causes the assembler to generate byte values for each of the numbers
appearing after the pseudo op code. You should probably limit the
number of entries in a single BYT statement to a maximum of 20. The
entries may be expressed as hexadecimal, decimal, octal, binary num-

-3 -

THE ASSEMBLER 3.3

ber, a single character encased in single quotation marks or a direct
page label (i.e. has a value less than $0100).

No space should appear before or after a comma; anything after a space
will be considered a comment.

Any legal arithmetic operation within the operand field will be
accepted.

Example:

WOR ADDR+5, 'A', $FDEE
BYT >LABEL, DUMMY + 1
LINE BYT 1,1, 8D, $FF, >LAB1, 'A"'

ERROR CONDITION: If any value is greater than $00FF (one byte maxi-
mum value), an error condition will be flagged.

LWD <absolute addresse(s)>

LWD stands for Long Word and generates 4 bytes of code (only 2 may
be displayed). This pseudo operation is designed to be used with Pro-
DOS 16 commands or in other instances where a long address repre-
sentation of an absolute address is necessary.

The code is generated in least significant byte, middle significant byte, mem-
ory bank where loaded and zero. The first two bytes will have their values
relocated if necessary.

Example:

MLI16 EQU #SE1@0PA8
ORG 31000
NAT
Mi6 need 16 bit instr
BRA LABFW
PARMLIST RES 40
LABEL STZ PARMLIST
STZ PARMLIST+ 2
JSL MLI16 do a Prodos 16 quit
WOR $29
LWD PARMLIST
BCC LABFW
JMP ERROR
LABEL EQU *

- 39 _

33

THE ASSEMBLER

STR ‘any string’

Causes the assembler to generate one Apple ASCII character (most sig-
nificant bit set (1)) for each character between single quotes. The string
must be enclosed in single quotation marks. This command is
extremely useful for sending output to the screen.

Example:

CcouT EQU $FDED
ORG $2000 ProDOS 8 SYS file

EMU Want 6502 mode

BRA PROG NOTE: BEGIN PROGRAM EXECUTION
OUTPUT STR 'THIS IS A STRING'

BYT $8D

PROG LDY #4@
LABEL LDA OUTPUT, Y
JSR COUT
INY
CMP #3$8D
BNE LABBK
BRA PROG

This program, when assembled and executed, will print THIS IS A STRING
continuously until you hit CONTROL-Reset or turn the computer off.

WOR <value(s)>

Generates two bytes of code in 65816 addressing format (LSB, MSB).
If the value is less than $0100 then MSB will be set to zero. Values may
be in hexadecimal, binary, octal, decimal or a label. Absolute addresses
will not be relocated with this command. If you are creating a table of
absolute addresses, then use ABS. You should not specify more than
20 entries on a single source line.

No space must appear before or after a comma. Anything following a space
will be considered a comment.

Example 1:

ADDR EQU $EEFF
TABLE WOR $FFFD, $FF, $1234, ADDR, @

The assembler will generate FD FF FF 00 34 12 FF FE 00 00.

=i =

THE ASSEMBLER 3.3

Any legal arithmetical operation within the operand field will also be
accepted.

Pseudo Operation Codes Affecting Code Generation

ORG <address>

Used to set the program counter of the assembler and cause the object
code to be generated by the assembler to be written to disk. The next
statement assembled will have the address specified by the ORG state-
ment. Addresses may be specified in decimal, hexadecimal, or a previ-
ously declared label. You may have multiple ORG statements in the
same program.

ORG is a very powerful statement, and with the correct use, you can
cause several different types of files to be generated. It is possible to
generate a ProDOS 8 SYS file, a static MCL file or a relocatable MCL
file.

If the address following the ORG has a value of $2000, the assembler
will generate a SYS file which can only be loaded under ProDOS 8 or
by a file you create yourself. This can be useful if your code will be exe-
cuted only on an Apple I1+, E or C.

If the address specified following the ORG has an address greater than
$FFFF, an MCL file with the fixed address specified will be created. If
you wish to generate a program in bank 0, then specify an address in
bank $FF (i.e. an address of $FF####). You must be careful with
the address you specify because, if you try to load the file and the mem-
ory is already reserved, you will receive a memory full error from the
Memory Manager. If you specify multiple ORG statements in one pro-
gram, you must be certain the addresses do not overlap.

If you specify an address less than $10000, the assembler will generate
a file which will be loaded at the first area available in memory (i.e.
relocatable). The loader will alter all absolute addresses and related val-
ues. These files are larger than the fixed address files, but they are
more flexible. You must also be very careful as to the syntax used

< -

33

THE ASSEMBLER

within a program. Some syntax will generate an address that will be
relocated, while other syntax will not relocate this address. For exam-
ple, the pseudo op WOR will not generate relocatable code while the
pseudo op ABS will. If in doubt, please refer to the instruction
description in the manual.

Note: Because of the way the assembler allocates direct page locations,
it is perhaps safest not to set an ORG at less than $100.

PRG <address>

PRG causes a program to be written to memory instead of to disk. In
order for code to be generated, an ORG or PRG statement must appear
in the source code.

The object code is written to a buffer, then, when the assembly is com-
plete, the code is moved to the address specified. That means no con-
flict should exist between your generated code and the system neces-
sary locations. Simply do not specify an address such that your code
will overwrite the assembler or the buffer area. Code not in bank 2
should be safe as the assembler/editor/monitor/shell module usually
loads there.

If the buffer should overflow, the assembly will abort with the appro-
priate message.

Pseudo Operation Codes Affecting Macros

EXP <label> <parameterl>,<parameter2>>, etc.

Used when you want a previously defined macro expanded at the cur-
rent line. The parameters will be included in the order they are defined
as in the later example.

The total number of characters involved in a macro expansion should
not exceed the macro buffer area. The assembly will be aborted with
the appropriate error message if the buffer overflows. This should

- -

THE ASSEMBLER 3.3

never be a problem as the macro area reserved on the IIGS is about
16 kilobytes.

MAC <label>

In order to define a macro command for later expansion, the program-
mer uses the MAC pseudo op code followed by a label. This label will
be used when the macro is expanded later in the code with the EXP
pseudo op. It is important the macro be defined before it is used,
otherwise you will receive an error.

Parameters may be specified within the macro definition by placing a
question mark (?) followed by a digit or letter, a “1”’ representing the
first parameter, a “9” representing the ninth parameter, an “A” repre-
senting the tenth parameter, an “Z” representing the thirty-fifth par-
ameter as if it were a base 35 system.

A TMC pseudo op terminates the macro definition and must not be left
off, otherwise the macro storage area will certainly overflow.

Within the macro definition, the parameter may be designated as any-
thing, even labels, then, when the macro is expanded, it will be
changed to its definition. If the parameter is undefined, an error mes-
sage will be issued, and the parameter will not be expanded.

Macros may be nested by using the EXP <label> statement within a
macro definition. In theory, at least, no limit exists to the amount of
nesting.

Example:

MAC EXAMPLE

LDbA 71

STA ?3 COMMENT WILL BE INCLUDED
JSR ?2 WHEN EXPANDED

TMC

EXP EXAMPLE FIRST, SECOND, THIRD

This will expand to:
LDA FIRST

STA THIRD COMMENT WILL BE INCLUDED
JSR SECOND WHEN EXPANDED

=43 =

3.3

THE ASSEMBLER

When the macro is defined, it is written to a buffer area of 16K. If this buffer
should be exceeded, the assembly will be aborted with the appropriate
message.

During a normal assembly, the assembler reads the source code into a buffer.
If the buffer is too small, the assembler will simply process the source code
until it is finished, then continue reading the rest of the code into the buffer.
An area of about 16 kilobytes is reserved for macro expansion. If this is
exceeded, the assembly will also abort as explained above.

TMC

EJT

LST

NLT

This pseudo op is used to terminate a macro definition. This statement
is mandatory. Without it the entire file will be considered a macro from
the MAC statement to the end of file.

Pseudo Operation Codes Affecting Text Output

Used to cause a page eject (top of form). Useful only if your printer’s
top of form character is $C.

Causes an assembled listing to be sent the the screen. Default is LST.
Implies the use of an NPR pseudo op.

Pressing a letter “L” from the keyboard during pass two will also cause
the listing to be sent to the screen if the screen output had been previ-
ously turned off.

Causes the listing not to be sent to the screen. Since nothing is dis-
played, use of NLT speeds up the assembly process considerably. If

THE ASSEMBLER 3.3

NPR

PRI

the printer list option is also turned off, “2”s will be displayed on the
CRT every 20 lines as the lines are assembled.

Pressing the letter “N” from the keyboard will also turn the listing off
during pass 2.

Causes an assembled listing not to be sent to the printer. Useful to send
only that portion of a listing or just the symbol table to the printer.

Pressing the letter “Q” from the keyboard during pass two will also
turn off the listing to the printer.

Sends an assembled listing to the printer. If the last statement of the
program is a PRI, the assembler will only send the symbol table and
possible error messages to the printer.

Pressing the letter “P” from the keyboard during pass two will also
turn off the listing to the printer.

The listing will be sent through port or slot 1. If you are not using the
Apple IIGS’ built-in serial printer port, be certain the printer’s inter-
face is in this slot, else your system will hang.

Pseudo Operation Codes Affecting Source Code Input

Normally, the assembler will read as input the source file stipulated when the
assembler was first invoked from the Monitor/Shell. The following pseudo op
codes are used to allow other files to be also read in. In particular, the CHN
command should be used in the case of large programs (over a thousand lines
of code).

— i =

33

THE ASSEMBLER

CHN <pathname>

Causes the assembler to read <pathname> as if it were physically posi-
tioned after the file which was being assembled (i.e. chained).

This instruction is mostly transparent to the user. It is important that
all the files to be chained are currently online. When a file is chained, a
message is sent to the screen informing the user.

The assembler creates one object file (if the ORG pseudo op is used).
That object file has the name of the source file (the name you typed in)
with a .B appended to make certain you do not try to overwrite your
text file (name can be overridden by typing a ¢,’<pathname> following
the source code name, but a .B will still be appended).

CHN should be the last line in the code. Any further lines will be
ignored by the assembler.

INS <pathname>

Causes the assembler to use <pathname> as it were physically sitting
at the position where the INS statement is sitting. As with EXP, line
numbers will be the same throughout until the assembler is finished
with <pathname>.

Be certain the needed file is currently online at assembly time.

When this statement is encountered during both passes, the statement
INCLUDING <pathname> will be displayed on the screen.

Example:

INS /LIBRARY/FILE1l

FILEI from the volume /LIBRARY will be read until its end of file; its data
processed one line at a time. Processing is returned thereafter to the next line
in the inserting file.

A file which is being inserted may not contain an INS, EXP or CHN state-
ment. If it does, you will get an ILLEGAL OP CODE message and the oper-
ation will be ignored.

-8 -

THE ASSEMBLER 33

Pseudo Operation Codes Effecting Conditional Assembly

If you wish to have source code which will be assembled at different times
under different conditions, then you can make use of the following op codes.

ELS

This instruction requires no operand. It should be used only if the IFF
pseudo op is still in effect. This statement will evaluate to the opposite
of the IFF condition and either cause or hinder code generation accord-
ingly. For example, if the IFF statement evaluates to greater than 0,
the ELS statement will turn off the code generation until the STP
statement or the end of code.

An ELS statement not coupled with an IFF will simply turn the code
generation off.

IFF <value>

There must be an operand field in this statement. If, during assembly
time, the operand evaluates to a value of zero, the following statements
to the STP statement, ELS statement or end of code (whichever comes
first) will not be processed.

If the operand is not equal to zero, the code will be processed as if the
IFF statement were not there. You must be certain the operand can be
properly evaluated at the time the statement is encountered during pass
1 (i.e. no forward references), otherwise probable errors will result.

This statement is useful if you wish different code generated at differ-
ent times. Conditional statements cannot be nested.

Example:

COND EQU @
<codel>
IFF COND
<code2>
ELS
<code3>
STP

L -

3.3 THE ASSEMBLER

By changing the operand of the EQU statement, you can cause code2 to be
assembled instead of code3.

STP

This statement is used to terminate an IFF statement. It should be
used only if the IFF statement is used. This statement will terminate
all unresolved conditional statements in effect.

Pseudo Codes Affecting Assembler and CPU Mode.

The 65816 CPU can operate in several different modes of operation. It can
operate in 6502 emulation mode, that means, as far as addressing and timing
are concerned, it operates almost exactly as if it were a 65C02, the same
microprocessor used in the Apple Ile and Apple Ilc.

If the 65816 CPU operates in native mode, it can operate with:

® an 8 bit accumulator and memory operations and 8 bit index registers or
® an 8 bit accumulator and memory operations and 16 bit index registers or
® a 16 bit accumulator and memory operations and 8 bit index registers or
® 2 16 bit accumulator and memory operations and 16 bit index registers.

There apparently is some confusion as to 8 bit mode of operation and 6502
emulation mode. While it is true the 65816 is always in an 8 bit mode if it is in
6502 emulation mode, it can also be completely in 8 bit mode when in native
65816 mode. They are two different things and must not be confused.

If the 65816 is in emulation mode, it cannot reference any memory beyond
65535 ($FFFF). For example, JML $2C000 will jump to location $C000, in
the same bank. As far as long addressing is concerned, it is a 6502.

If the microprocessor is in native mode and still in 8 bit mode (the default
condition when going from emulation mode to native mode), it can still refer-
ence all available memory.

From the standpoint of the developer of a macro assembler, modes of opera-

48 =

THE ASSEMBLER 3.3

tion are the most difficult topic with which to deal. A development package
should try as much as possible to protect the user from possible errors.
However, in the cases of different modes such as we have here, it is impossi-
ble. It is quite possible for the assembler to generate code which, when exe-
cuted, will be incorrect code. If the code is generated in one mode, but is
called from a routine in another mode, the user will probably have errors
which may be difficult to determine.

In order to minimize this problem, we have decided that these instructions
will not only be instructions to the assembler, but will also generate the code
which will cause the CPU to assume the same mode of operation.

On the surface, this seems to be a complete solution, and it would be if it
were not for one important fact: the assembler will always generate code in a
linear fashion, doing one line at a time. However, when the code is executed,
it is seldom in a linear, sequential fashion. Branches, JSRs and JMPs create
problems for this solution to be completely satisfactory. It therefore becomes
the task of the programmer to be certain of the intended mode and to pro-
gram accordingly.

Note: Except for the EMU and NAT pseudo ops, the code generated by the
other instructions will not perform the desired task unless already in native
mode. You simply cannot have 16 bit registers and memory operations if
emulating a 6502. That means, if you are using this chip as a 65816, it is best
that the NAT pseudo operation code be the first statement in your program.

You should also not assume any default conditions upon start of execution,
but explicitly state the condition you wish to use.

EMU

If you wish the 65816 to act as a 6502, then make use of the EMU
instruction. Although it will generate the code to cause the 65816 to
become a 6502, the only effect this instruction has on the assembler is
to cause it to ignore the operand field on the BRK operation code and
generate 8 bit immediate instructions.

- 49 -

3.3 THE ASSEMBLER
The assembler will generate the following equivalent code for this
instruction:
SEC
XCE set the emulation bit
108
The 108 instruction will cause the assembler to generate 8 bit instruc-
tions for every instruction relating to the index registers using immedi-
ate addressing such as LDX #%$12, and generate the code to cause the
65816 to be in 8 bit mode for the index registers.
Remember that a NAT instruction must have been encountered previ-
ously for the code generated by this instruction to have any effect on
the chip.
The assembler will generate the following equivalent code for this
instruction:
SEP #8$1¢ sets bit 4 of the status register
116

The 116 instruction will cause the assembler to generate 16 bit instruc-
tions for every instruction which relates to the index registers using
immediate addressing such as LDX #$1234, and generate the code to
cause the microprocessor to be in 16 bit mode for the index registers.
The high order bytes of the X and Y registers will be set to zero no
matter what the value those bytes may have had previously when in 16
bit mode. This is important, because if you go from 16 bit index regis-
ters to 8 bit and back to 16 bit, you will lose the high order byte of the
index registers.

Remember that a NAT instruction must have been encountered previ-
ously for the code generated by this instruction to have any effect on
the chip.

- 50 -

THE ASSEMBLER 33

The assembler will generate the following equivalent code for this
instruction: ‘

Mo8

Mile6

REP #8$10 clears bit 4 of the status egister

The M08 instruction will cause the assembler to generate 8 bit instruc-
tions for every instruction relating to the accumulator using immediate
addressing such as LDA #8$12, and generate the code to cause the chip
to be in 8 bit mode for the accumulator and memory instructions.

Remember that a NAT instruction must have been encountered previ-
ously for the code generated by this instruction to have any effect on
the microprocessor.

The assembler will generate the following equivalent code for this
instruction:

SEP #%$20 sets bit 5 of the status register

The MI16 instruction will cause the assembler to generate 16 bit
instructions for every instruction which relates to the accumulator
using immediate addressing such as LDA #$1234, and generate the
code to cause the chip to be in 16 bit mode for the accumulator. The
high order byte of the accumulator will be what it was when last in 16
bit accumulator mode.

Remember that a NAT instruction must have been encountered previ-
ously for the code generated by this instruction to have any effect on
the 65816.

The assembler will generate the following equivalent code for this
instruction:

REP #8%20 clears bit 5 of the status register

- 8T

3.3

THE ASSEMBLER

NAT

Will cause the assembler to require an operand field for the BRK
instruction as well as generate code which will place the CPU into
native 65816 mode. Although in native mode, both the accumulator
and index registers will be in 8 bit mode.

Remember, this instruction is necessary to cause the microprocessor to
be able to go between 8 bit and 16 bit modes.

The assembler will generate the following equivalent code for this
instruction:

CLC
XCE clear the emulation bit

Example:

ORG $1000
NAT
BRA MAIN
STRING STR 'This is a demo string'
BYT @
MAIN M@8
108
LDY #0
LABEL LDA STRING,Y
BEQ LABFW
JSR COUT Cannot be $FDED in Bank @
INY
BNE LABBK
LABEL EQU *

-8 .

THE ASSEMBLER 3.4

3.4 65816 ADDRESSING MODES

This section describes the different addressing modes for the different operat-
ing modes of the 65816 microprocessor necessary to understand the syntax
required by this macro assembler.

There must be at least one space between the op code and the address field (or
operand). Officially, there are 25 distinct addressing modes used by the
65816. However, this number seems to be somewhat of an exaggeration. Why
are LDA $2000,Y and LDA $2000,X considered different addressing modes?
Why does RTL have a different addressing mode than RTS when the only
difference is the number of bytes pulled from the stack. Why is implied “ad-
dressing” even addressing? These are questions you will have to answer for
yourself. Suffice to say, you will not have to learn 25 different syntax in order
to take advantage of the addressing capabilities of either the 65816 or this
assembler.

Accumulator addressing

These instructions will operate only on the accumulator. The 65816 has only
four of these, they are: ASL A, LSR A, ROL A, ROR A.

Note: DEC A and INC A are treated as implied addressing by the assembler
using the op codes DEA and INA respectively.

Immediate addressing

If in 8 bit mode, takes the byte following the op code as the specified address
and performs its operation. If in 16 bit mode, uses the two bytes following the
op code as the address and performs its operation.

Example:

LDA #SAQ
LDX #<LABEL

Note: The “#” symbol is used to specify immediate addressing.

-8

34 THE ASSEMBLER

Absolute Addressing

Uses the two bytes following the operation as its address (i.e. must be an
address greater than $O0FF and less than $10000). The address stated is
appended to the data bank register or program bank register to yield the
effective address.

According to 65816 addressing conventions, absolute addressing is expressed
in least significant byte, most significant byte order. However, the assembler
will take care of the order, so this should be transparent to the user.

Example:

LDA $FF@Q
LDY ADDR LABEL IS NOT AT DIRECT PAGE
JMP $FFD2

Note: It is primarily this type of address which the system loader will relocate
in the case the user is specifying a relocatable load file.

WARNING: This addressing mode does not necessarily stipulate memory
locations within the bank in which the executing code is residing. It is the
programmer’s responsibility to make certain the data bank register is set
according to the programmer’s wishes.

Direct Page

The assembler assumes direct page addressing if the address specified after
the operation code is from location $0000 to $O0FF (i.e. direct page).

The actual direct page location is always to be found in bank zero. The direct
page register is added to the value in the operand to give the effective address
in bank 0. The direct page register is a 16 bit register which means the start of
the direct page can be anywhere in bank 0.

Note: Do not confuse direct page addressing with either zero page on the
6502/65C02 or with addresses less than $0100 in the bank your code is in
(even if in bank 0). If you wish to specify zero page addressing (an address
less than $0100 in bank @), precede the operand with a greater than sign “>"’
to force long addressing. If the operand is less than $0100 but you wish an

- Bl -

THE ASSEMBLER 3.4

address in the current bank, precede the operand with an exclamation point
“I” to force absolute addressing. This technique can only be used in cases
where the operand field does not begin with a “(”, “[” or “#”.

Example:

LDA $F@ direct page

LDA P1 where P1 has an address less than 256
LDA !$F¢ absolute address

LDA >8$F@ zero (not direct) page

Note: Notice the difference between direct page and immediate addressing.
After the instruction LDA #$F0 is executed, the accumulator will contain an
$F0. After the instruction LDA $F0 is executed, the accumulator and direct
address $F0 will have the same value.

Indexed Direct Page Addressing

Adds the content of the specified register and the byte following the operation
code to the direct page register to get the address in bank @ upon which to
operate.

Example:

LDA $F@,X
LDX $FQ,Y

Note: The assembler will consider such instructions as STA $F0,Y as illegal
because direct page addressing is impossible with the Y register. As with zero
page addressing, however, you can force $F0 to be treated as an absolute
address by preceding the operand with an exclamation point “!”” The assem-
bler will then accept this instruction and treat STA !$F0,Y as an absolute
instruction. If you wish zero page addressing, precede the $F0 with a greater
than sign “>"" to force long addressing. This technique does not work in

bE 11

those cases where the operand field begins with a ““(”’, “[” or “#”.

Indexed Absolute Addressing

Takes the two bytes following the operation code, adds the contents of the

=55 -

3.4 THE ASSEMBLER

specified register, appends that address to the data bank register to get the
effective address.

Example:

LDA $ABCD, X
LDX $SABCD,Y

Implied Addressing

Always a one byte instruction which lacks an operand.

Example:

DEY
PHA
PLA
TCD
DEA
INA

Short Relative Addressing

The 65816 uses short relative addressing exclusively with branching. Uses the
byte following the operation code as a branch offset. If bit 7 of the address
byte is set, the branch will be before the operation, if not set, afterwards. The
address byte is added to the program counter when the program counter is
pointing to the next instruction.

With short relative branching, you may only branch about 125 bytes in either
direction.

Example:
BRA LINE

BNE LABFW
BPL *+5

- B

THE ASSEMBLER 34

Long Relative Addressing

This addressing mode is identical to the short relative addressing mode except
that the 2 bytes following the operation code are used as the branch offset.
This makes it possible to branch relative anywhere within the bank in which
the code resides.

One instruction uses this addressing mode, it is:
BRL ADDRESS

As far as the user is concerned, a BRL ADDRESS can be used instead of the
JMP ADDRESS.

Direct Page Indirect

Takes the byte following the op code as an address in the direct page. The
CPU fetches the value from that address and the subsequent address,
appends the data bank register to that value, and uses that value as an address
upon which to act.

Example:
LDA ($FQ)

Let us assume that the direct page register is set to $0C00, the data bank reg-
ister is set to 3, and at locations $0CF0 and $OCF1 in bank 0 are an $ FF and
$CO respectively. The CPU will first add $F0 to the $0C00 to obtain the
actual address specified in bank 0. The CPU will then fetch the $FF and the
$C0. It will then set the accumulator to the value contained in $COFF in bank
3.

Indexed Indirect Addressing

Takes the value of the byte following the operation code, adds the direct page
register, then adds the the contents of the X register to that value. Using that
value as an address, it takes the value of that byte and the subsequent one,

— &7

34 THE ASSEMBLER

appends that value onto the data bank register, and uses that value as the
address upon which to perform the operation.

Example:

LDA (SF@,X)

Let us say X has a value of two, and at location $0CF2 and $0CF3 in bank 0
are $11 and $CO respectively. The data bank register is set to 3 and the direct
page register is set to $0C00. The CPU will add $0C00 to $F0 to obtain the
address $CF2 in bank 0. The CPU will then fetch the $11 and $C0 obtaining
$CO11 as the address in bank 3. In this case only, the statement is equivalent
toan LDA $3C011.

Indirect Indexed Addressing

Using the value of the byte following the operation code as a direct page
address, fetches the value from the specified address and the following byte
and adds the Y register to them. Then it appends that value to the data bank
register in order to obtain the address on which to perform the operation.

Example:
LDA (8FQ),Y

Note: A subtle but important difference exists between this addressing mode
and the previous one. In the previous one, the contents of the register are
added before the first address is obtained; in this case, the contents is added
after the first address is obtained.

Example:

LDA ($F@,X) and
LDA (3F@),Y

Performs the same operation only if X and Y both contain zero.

Indirect Absolute Addressing

Pure indirect non-zero page addressing. The same as the previous two

= 5§ =

THE ASSEMBLER 3.4

instructions, except the registers are not used and the operand is an absolute
address. One instruction takes advantage of this addressing mode, it is:

JMP (ADDR)

WARNING: ADDR is assumed to be an absolute address in bank 0, so be
careful. This appears to be a kludge by the microprocessor’s designers.

Absolute Indexed Indirect Addressing

Takes the two bytes following the op code, adds the value contained in the X
register to their contents and appends that value on to the data bank register.
The CPU uses that computed value as an address which is to be acted upon.
One instruction uses this addressing mode, it is:

JMP (ABS_ADDR, X)

Note: Unlike the JMP (ADDR) instruction mentioned previously, this
instruction uses the bank pointed to by the data bank register for
ABS_ADDR.

Stack Absolute Addressing

This addressing mode is essentially a 16 bit immediate instruction. It is
always 16 bits, regardless of the accumulator or index mode.

This addressing mode is used with the PEA instruction. This instruction is
used so often that you must understand the particulars of the syntax used by
the assembler.

The PEA instruction is usually used to push an address onto the stack.
Because the operand may or may not be an absolute address (which may be
relocated at load time), you must be careful.

If the operand is preceded by a numeral sign “#”, it is assumed to be a con-
stant and will not be modified at load time.

If the operand is preceded by a greater than sign “>", it will take byte one

R

3.4 THE ASSEMBLER

and byte two of the operand, and, if within the range of an absolute
address, will cause this value to relocated at load time.

If the operand is preceded by a lesser than sign “<”, byte two and byte three
of the value will be taken, and if the value is within the range of an absolute
address, at load time, byte 2 will be relocated accordingly, and byte 3 will be
set to that of the bank in which the code is loaded.

Example:

ORG $1¢00
BRA MAIN
ADDR RES 10
MAIN PEA #$Cg@@
PEA >ADDR 2 LSB's, relocatable
PEA <ADDR 2 MSB's, MSB will be load blank #
PEA #>ADDR fixed address

Absolute Long Addressing

Absolute long addressing is the same as absolute addressing except that the
program or data bank is explicitly specified in the address field. This means
that the value in the address field must be greater than $FFFF. If a label is
used within the operand field, it must have been declared before this state-
ment is encountered or errors in assemble will result. Unless the operation is
a JML or JSL, during pass one, the assembler assumes a three byte instruc-
tion for operand fields not yet defined. Since this addressing mode requires a
4 byte instruction, it is mandatory that labels within this field be previously
declared.

If the value in the operand field is $FFFF or less and you wish to use absolute
long addressing, then specify a > at the beginning of the field.

Example:

LDA $34567 $4567 in bank 3

STA >3%C@P0 $COPP bank @

JML $2A00¢ note!! must use JML and not JMP
JSL $31234 note!! must use JSL and not JSR

~ 60 -

THE ASSEMBLER 3.4

Absolute Long Indexed with X

This addressing mode is identical to absolute long addressing except the value
contained in the X register is added to the address in the operand field in
order to obtain the effective address.

Example:
LDA $12345,X

LDA LONG_ADDRESS, X
STA >$2000,X address in bank 0

Direct Page Indirect Long Addressing

This addressing mode is identical to direct page indirect addressing mode
except the value contained in the byte following the direct page address speci-
fied is used to specify the bank instead of the data bank register.

Example:

LDA [$F@]
STA [DIRECT_PAGE]

Stack Direct Page Indirect

This addressing mode is identical to direct page indirect except for the effect
it has on the contents of the stack while this operation is being executed.

This addressing mode adds the value contained in the operand field to the 16
bit direct page register and pushes that 16 bit value onto the stack.

Example:

PEI (DIRECT_PAGE)

Stack Program Counter Relative

Adds the value of the 16 bit program counter at the beginning of the next

&=

34 THE ASSEMBLER

instruction to the signed address specified in the operand field and pushes
that value onto the stack.

Example:

PER ADDRESS

Stack Relative Addressing
Adds the value of the one byte operand to that of the stack pointer to get the
address in bank 0.

Example:

LDA 3,8 fetch the third (and maybe forth) byte(s) after SP

Stack Relative Indirect Indexed

This addressing mode is somewhat similar to both the stack relative and
direct page together. The indirect address is accessed the same way as the
value is accessed in the stack relative. This 16 bit value is then used as an
address where the required data is accessed.

Example:

LDA (1,8),Y

Block Move

The block move addressing mode is by far the most complicated one to
understand as well as to implement as the registers must contain certain val-
ues as well as the specification of the operand field.

The 16 bit accumulator must contain the number of bytes minus one to be
moved. The sixteen bit X register contains the starting address of the source.
The sixteen bit Y register contains the starting address of the destination. The
first operand field must specify the source bank and the second operand
instruction must specify the destination bank.

e - I

THE ASSEMBLER 34

In Micol Macro™, the assembler expects to find the complete source and des-
tination addresses in the operand field. This is done to make the coding easier
for the programmer; the assembler will ignore all but the bank number.

Example:
M16 must have 16 bit registers
I16
LDA #$20¢1 move $2009@ bytes
LDX #$8000 source is at $8¢000
LDY #%$2000 destination is at $2000

MVN $28000, $42¢000 move from bank 2 to bank 4

Note: This instruction is probably not as fast as you might think. It requires
seven clock cycles for each byte moved. Also, in tests we have run, the two
instructions using this addressing mode MVN and MVP, were not able to
move data across bank boundaries, significantly limiting their usefulness.

=

3.5 THE ASSEMBLER

3.5 ASSEMBLER ERROR MESSAGES

When errors occur, the message(s) will be flagged by the assembler as they
are found, printed in inverse. In addition, a summary of the errors will
appear after the symbol table dump.

ADDRESSING ERROR AT <row number> IN FILE [/volume.name/]
filename

The address field of the specified line is in error.

DOUBLE DECLARATION ERROR AT <row number> IN FILE
[/volume.name/] filename

You have declared the same label a second time. Appears during pass one.
OP CODE ERROR AT <row number> IN FILE [/volume.name/] filename

The op code used was not recognized as a 65816 instruction or as a Micol
Macro’s™ pseudo op code.

UNKNOWN LABEL ERROR AT <row number> IN FILE
[/volume.name/] filename

You have referenced a label that was never declared.

BRANCH OVERFLOW ERROR AT <row number> IN FILE
[/volume.name/] filename

This error can have two causes:
a) the label to which you are branching has not been declared.

b) you have tried to branch more than the allowable bytes (about 126 bytes in
either direction).

SYMBOL TABLE OVERFLOW AT <row number>
You have declared more labels than there is memory to store them.

FATAL ERROR: ABORT, HIT KEY, BUFFER OVERFLOW AT <row
number>

If the source code buffer during a macro expansion, the macro buffer during

— 64 ~

THE ASSEMBLER 3.5

a macro definition or the memory buffer as the result of a PRG statement
should overflow, the assembly process will simply be aborted with this mes-
sage HIT ANY KEY TO CONTINUE. Because the Apple IIGS has a large
amount of memory, this error will probably never occur.

At the conclusion of the assembly process, after the symbol table dump, the
error messages will be displayed again. Pressing the letter ““S” will pause the
list for you to read (press any key except “C” to continue). Pressing the letter
“C” will terminate the error messages.

The system stops counting or storing errors found during assembly if greater
then 127, but will continue to report them. The line numbers used are the
same as used by the editor.

Symbol Table Dump

At the conclusion of the assembly, all labels and their addresses will be dis-
played if LST or PRI is in effect. If a label has not been accessed (has no use
in the code), it will be displayed in inverse on the screen and have a “>”
pointing to its address if printed. A local label will be designated by a “#”.

The symbol table and the Apple IIGS monitor will probably be your most
powerful debugging tools.

— 65 —

3.6 THE ASSEMBLER

3.6 HOW TO ASSEMBLE YOUR PROGRAMS

1. You must first have created and saved your program source file using the
text editor.

2. Specify ASSM <pathname> or ASSM <source pathname>, <destination
pathname>.

3. The assembler will process your file, generating 65816 code to a file if disk,
or a buffer if the PRG pseudo op has been used, saving the code to the name
specified above with a “.B”’ appended assuming the ORG pseudo op was used
in the program.

4. When finished, you will get the error messages, if any, giving you informa-
tion about the total number of errors, number of bytes of code generated, and
number of lines processed. If you have used macros or inserted a file, the last
figure will probably be greater than the actual number of lines of text you had
edited.

5. If you have specified the PRG pseudo op in your code, the object code will
be moved from its buffer to the area specified. You will then be asked if you
wish to execute it. Press “Y” if you do and “N” if not. If “Y” is pressed, the
execution will begin at the first byte of code, so be certain your code’s execu-
tion begins at the first byte. If your code has not overwritten any of the
assembler in memory, you may return to the command level of the assembler
by pressing <CTRL> Y <CR> after a BRK has been executed in your
program.

If you have specified an ORG instead of PRG in your program (the method
we strongly recommend) and have received no syntax errors, you will receive
the prompt B(load), R(un), M(onitor/shell). If you wish your assembled file
loaded, Press B. After your file has loaded, you will be placed into the GS
monitor. If you wish to execute your assembled file, press R. Your file will be
loaded and execution will begin at the last ORG statement stipulated. If you
press M, you will be returned to the Monitor/Shell. Only these three letters
are acceptable input.

e

THE ASSEMBLER 3.6

APPENDIX A

BUF_HANDLE EQU 310
BUF_MEMORY EQU BUF_HANDLE +4
ACC_REG
X _REG
Y_REG
DP_LOC
KEYBOARD
STROBE
TOOLS

8 o ook RS R R R o oK K R R o o SR K R K SR KoK KR o K SRR KKK K R K ok R oK R Ok Rk K K K
GET MEMORY FROM THE MEMORY MANAGER MACRO.

FIRST DEFINE THE MACRO WHICH WE WILL EXPAND

LATER SEVERAL TIMES.

L]

]
-]
’
’
H

A = MAY NoF—>

]
H
]

EQU
EQU
EQU
EQU
EQU
EQU
EQU

BUF_MEMORY + 4
ACC_REG+2
X_REG+2
Y_REG+2
3Cp00

SCP10

SE10000

THE ATTRIBUTE BYTE DETERMINES
WHERE AND HOW MEMORY IS ALLOCATED BY THE
MEMORY MANAGER;

THE BIT CONFIGURATIONS

BYTE TO LEAST SIGNIFICANT BYTE)

BIT 15:
BIT 14:
BIT 13-11:
BITS 8-9:
BITS 5-7
BIT 4:
BIT 3:
BIT 2:
BEY 1
BIT 0:

1 =
1

3 =

o

e e

MAC
PEA
PEA
PEA
PEA
LDA
PHA
PEA
PEA
PEA

- EXAMPLE PROGRAM -

ROM TOOLS ENTRY POINT

+ ok oK oK oK oK ok R K oK 3 oK 3K Ok o 3 3K K 3K oK oK 3K oK ok oK K oK 5K oK 3k 3K ok 3k ok ok ok oK ok 3K ok ok ok ok oK oK oK K oK K ok K

ITS USE IS CRITICAL.
(GOING FROM MOST SIGNIFICANT
ARE:

MEMORY WILL BE LOCKED, @ = UNLOCKED
CANNOT BE MOVED, @ = CAN BE MOVED
(NOT USED)
HIGHEST, ¢ = LOWEST PURGE LEVEL
(NOT USE
MAY#P = MAY NeT CROSS BANK BOUNDRIES

MAY, @ = MAY NOT USE SPECIAL MEMORY

DO, @ = DO NOT PAGE ALIGN

SPECIFIED ADDRESS, @ = RELOCATABLE ADDRESS
FIXED, @ = ANY BANK

-,**********************#*************************

MEMORY_MANAGER

#71
SYSTEM_ID

#72

#0
#0

==

SPACE FOR HANDLE

SPECIFY NUMBER OF BYTES
ID RETURNED FROM MMSTARTUP

ATTRIBUTE BYTE
LONG ADDRESS (IF APPLICABLE)

THE ASSEMBLER

LDX #80¢902

JSL TOOLS

BCC *+45

JMP ERROR

PLA GET THE HANDLE

STA ¢

STA 73 PARM 3 MUST BE THE HANDLE VAR
PLA

STA 2

STA 7342

LDA [@]

STA 7?4 PARM 4 MUST BE THE MEMORY VAR
LDY #2

LDA [¥],Y

STA ?74+2

T™MC

;o R s ok ke sk ok e ok o ok ok ke K ok ok K K R oK K R K o oK o KK oKk ok ok ok ok ok o kK ok ok Rk kK

; TO RELEASE THE MEMORY BUFFERS.

; LET'S USE THE SAME TECHNIQUE AS BEFORE,

; FIRST DEFINE A MACRO WE WILL USE SEVERAL
; TIMES, AND THEN DEFINE IT WITH THE

; PARAMETERS WE REQUIRE.

. 3k sk sk 5k ok 3k ok ok 3k ok 3k 3k %k 3k ok ok 3k ok 3k 3k 3k 3K 3k 3k 3k ok ok ok 3k 3k 3K 3K 3K 3 3K 3K ok sk 3K 3k 3k 3k ok 3k ok %k 3k

MAC RELEASE

LDA ?1+2
BEQ LABFW USE MSB AS RELEASE FLAG
PHA
LDA 7?1
PHA
LDX #3$1002
JSL TOOLS
BCC *+5
JMP ERROR
STZ ?71+2
LABEL RTS
T™MC
ORG 31009 MAKE A REL FILE
NAT WANT 65816 NATIVE MODE
M16 WANT A 16 BIT ACCUMULATOR
I16 WANT 16 BIT INDEX REGISTERS
JMP START

: sk 3k 3k ok 3k oK 3k 3k ok ok ok ok 3k ok ok 3k ok sk ok ok 3k ok o 3k ok ok sk ok sk ok ok ok ok 3k 3k ok ok ok sk 3k ok ok ok ok ok ok sk ok

; THE FOLLOWING STRINGS ARE THE COMPLETE SET

: OF ERROR MESSAGE FOR THE MEMORY MANAGER
3 o ok ok ook oK K o R KKK K R SRR K KK KK R R R R OK K KK K R K KKK K R R KOk K K

MESSAGES BYT 1
STR 'Memory full error'
BYE <. 2

= G =

THE ASSEMBLER 3.6

SYSTEM_ID
PRTEMP

DP_HANDLE
DP_MEMORY
ERR_VALUE
HITPROMPT

DETAILS_OUT

HIT

LABEL

LABEL

BELL

ERROR

LABEL

STR
BYT
STR
BYT
STR
BYT
STR
BYT
STR
BYT
STR
BYT
STR
BYT

JSR
PLA
RTS
JSR

STA
JSR
LDA
LDY
LDA

CMP

'Illegal operation on a ''NIL'' handle'

@,3

'"''NIL'' handle expected for this operation'
2,4

'Illegal operation on a locked or fixed blk'

@,5

'Attempt to purge an unpurgeable block!'
@,86

'Invalid handle given'

8,7

'Invalid owner ID given'

9,8

'Illegal load operation code'

@, $FF

2 NOT IN DP BECAUSE WILL CHANGE
2 TEMP LOCATION FOR PRBYTE

4 CANNOT BE AT DIRECT PAGE

4 BECAUSE THE DP REG WILL CHANGE
2

'HIT ANY KEY TO CONTINUE'

$8D, $8D, @

' IS BEGINNING OF MEMORY ALLOCATION'

88D, 0 @ IS A GOOD STRING END

CROUT

CROUT

#0

HITPROMPT, Y

#$FF

LABFW

coutT

#SFF FAILSAFE TEST

LABBK
DELAY

NEED TO KEEP C REG. SAFE

#7

couT

BELL

#$FF DON'T WANT MSB OF ERROR CODE
ERR_VALUE

HOME

ERR_VALUE

#0

MESSAGES, Y FIND START OF ERROR MESSAGE
#SFF KEEP ONLY ONE CHARACTER
#3SFF (I.E. ILLEGAL MESSAGE?)

s B

3.6

THE ASSEMBLER

ERROR100
ERROR200

LABEL

SAV_REG

RES_REG

couT

LABEL
LABEL

CouT1@¢

LABEL

BEQ
CMP
BEQ
INY
CPY
BNE
BRK
LDA

BEQ
JSR
INY
BNE
JSR
BRK
STA
BTY
STX
RTS
LDA

LDX
RTS

JSR

BPL
CMP
BNE
STA
LDA
BPL
STA

CMP
BNE
LDA
PHA

JSL
LDA
PHA
LDX
JSL
JSR
RTS

ERROR1Q0
ERR_VALUE
ERROR200

#$FF
LABBK
$FO

MESSAGES+1,Y

#SFF
LABFW
cour

ERROR200
HIT

$F1
ACC_REG
Y_REG
X_REG

ACC_REG
Y_REG
X_REG

#SFF
SAV_REG
>KEYBOARD
CouUT100@
#3%93
CouT10@
>STROBE
>KEYBOARD
LABBK
>STROBE
ACC_REG
#$8D
LABFW
#$B8A

#$180C
TOOLS
ACC_REG

#$180C
TOOLS
RES_REG

- 70 -

NO MESSAGE FOUND?

MATCH?

AN ERROR IN PRINTING MESSAGE ?
NOW PRINT MESSAGE

USER CAN DO WHAT HE WANTS HERE

MUST HAVE ONLY ONE BYTE
HAS A KEY BEEN PRESSED?
WAS THE KEY <CTRL> S

YES, SO DELAY UNTIL KEYPRESS
PAUSE DESPLAY

IF A <CR>, FORCE A <LF> ALSO

IS PASCAL OUTPUT, NEED <LF> ALSO

PRINT OUT THE CHARACTER

THE ASSEMBLER 3.6
CROUT PHA
LDA #8$8D
JSR COUT
PLA
RTS

: 3 o o ok ok ok ok ok sk 3k ok ok ok ok ok 3 ok ok 3k sk ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok ok ok ok ok

; DELAY UNTIL KEYBOARD IS PRESSED
; ANY KEY WILL DO
;3 ok ke ok s sk s sk ok ok ok ok ok ok ok ok sk R sk ok ok ok ok ok ok ok ok ok o o oK R oK R R R R R R OR K R K
DELAY PHA

M08

STA >STROBE
LABEL LDA >KEYBOARD

BPL LABBK

M16

PLA

RTS
- ok Sk 3K 3k ok ok sk sk sk ke o ok ok ok sk ke 3 ok 3k ok ok ok ok sk ok ok sk sk sk sk ok ok sk ok ok R ok ok ok ok ok ok ok sk ok ok ok
; PRINT THE STRING WHOSE ADDRESS IN CURRENT BANK
; IS PASSED IN THE ACCUMUULATOR. THE STRING MUST
; TERMINATE WITH A ZERO (9).

H 2k 2k 2k ok 3k sk ok sk ok ok ok ke ok sk ok ok ok sk ok ke sk sk 3k 3k ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok koK sk sk ke ok

WRITE_STRING STA DP_LOC

LDY #90
LABEL LDA (DP_LOC),Y

AND #S$FF

BEQ LABFW

JSR COUT

INY

BNE LABBK
LABEL RTS

i 2k 3K 2k % e ok 2k ok ok ok ok 3k e ok sk ok ok sk ok sk sk sk s ok ok ok 3k sk ok sk ok sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok sk %k

; ID TAG MANAGER

; CALLED ONLY IF MMSTART GIVES AN ERROR
3 3K oo oK R oK K koK oK oK K ok ok ok ok ok ok ok ok sk sk ok o sk kR ke sk sk sk s ok ok sk ok ok ok ok ok ok e ok

GETNEWID PEA #0
PEA #81300
LDX #8$20@3
JSL TOOLS
BCC MMSTARTUP100
JMP ERROR

3o sk ok ok ok sk ok ok ok ok ok ok kR ok s sk sk ok R ok s ok ok ok ok ok R R SRR R KR R R ok oK oK K K

; START UP THE MEMORY MANAGER

; GET THE APPLICATION ID
33K K ok ok oKk o oK K ko ook ok ok ok ok ok o ok o ok ok ok sk e sk ok ok ok ok ok ok s sk ok sk sk ok ok okok o ok ok ok

MMSTARTUP PEA #0
LDX #830202
JSL TOOLS

BCC MMSTARTUP100

- Tt =

3.6

THE ASSEMBLER

CMP #3207 INVALID OWNER ID ERROR
BNE LABFW
PLX
BRA GETNEWID
LABEL JMP ERROR
MMSTARTUP1¢® PLA =
STA SYSTEM _ID
RTS

;**

; INITIALIZE THE TEXT DISPLAY TO 80 COLUMNS PASCAL
SRR R R R KR KR KR R K R R R KRR R KR R Rk R Rk R K
INIT_SCREEN PEA #1 TURN ON 80 COLUMNS
PEA #0
PEA #3 SLOT 3
LDX #81¢0C TEXT TOOL CODE
JSL TOOLS
PEA #0 INITIALIZE OUTPUT
LDX #8150C
JSL TOOLS
RTS

;**

: TERMINATE THE ENTIRE APPLICATION
;**********************************#*************
MMAPPQUIT LDA SYSTEM_ID
PHA
LDX #$3¢2 —
JSL TOOLS
BCC LABFW
JMP ERROR
LABEL RTS
;**
: MAKE A SAFE DIRECT PAGE LOCATION
: THIS SHOULD BE THE SECOND ROUTINE
. CALLED, AFTER MMSTARTUP
;**
GET_DIR_PAGE EXP MEMORY_MANAGER $1¢@, $3C@@1, DP_HANDLE ,DP_MEMORY
PEA #¢
PEA #0 SPACE FOR HANDLE
PEA #0@
PEA #3100 SPECIFY NUMBER OF BYTES TO GET HERE
LDA SYSTEM_ID ID RETURNED FROM MMSTARTUP
PHA
PEA #3$C@Q1 ATTRIBUTE BYTE
PEA #0 LONG ADDRESS (IF APPLICABLE)
PEA #¢
LDX #309¢2 i
JSL TOOLS
BCC LABEL
JMP ERROR

= T

THE ASSEMBLER 3.6

LABEL PLA GET THE HANDLE
STA @
STA DP HANDLE PARM 3 MUST BE THE HANDLE VAR
PLA
STA 2
STA DP HANDLE + 2
LDA [@]
STA DP MEMORY PARM 4 MUST BE THE MEMORY VAR
LDY #2
LDA [@],Y
STA DP MEMORY +2
TMC
;NOW SET YOUR DIRECT PAGE
LDA DP_MEMORY SET THE DIRECT PAGE MEMORY
TCD
RTS
: sk 3k 3k 3k ok 3k sk ok ok ok ok 3k ok ok ok ok sk ok ok sk ok ok ok ok ok sk ok 3k ok 2k ok ok ok sk ok ok ok ok ok ok ke ok sk sk ok R ok 3k
. GET A BLOCK OF MEMORY FROM ANY LOCATION
. IN THIS EXAMPLE WE WILL ALLOCATE $8¢@0@® BYTES
3 sk sk 3K ok 3 ok sk ok sk sk ok ok 3k sk ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok ke ok ke 2k ok ok ok ok ke ok sk ok ok sk ok sk sk ok Xk
GET_BUFFER EXP MEMORY_MANAGER $8¢0¢@, $C3¢¢@, BUF_HANDLE, BUF_MEMORY
PEA #0 [CODE TO TMC EXPANDED BY ASSEMBLER]
PEA #0 SPACE FOR HANDLE
PEA #0
PEA #%$8000 SPECIFY NUMBER OF BYTES
LDA SYSTEM_ID ID RETURNED FROM MMSTARTUP
PHA
PEA #$C300 ATTRIBUTE BANK
PEA #0 LONG ADDRESS (IF APPLICABLE)
PEA #0
LDX #83p9p2
JSL TOOLS
BCC *+5
JMP ERROR
PLA GET THE HANDLE
STA @
STA BUF_HANDLE PARM 3 MUST BE THE HANDLE VARIABLE

STA 2

STA DP HANDLE+2

LDA [@]

STA BUF_MEMORY PARM 4 MUST BE THE MEMORY VARIABLE
LDY #2

LbA [0],Y

STA BUF_MEMORY +2

.

3.6

THE ASSEMBLER

o3k o ok ok ok KR ok o o ok ok koK Kk R ok o ok sk sk ok o ok o sk ok ok ok R ok SRk SR oK K oK R R 3 ok ok K

; DISPLAY THE ADDRESSES OBTAINED

2 3k ok ok ok ok ok ok ok 3k sk ok sk ok ok ok ok 3k ok sk ok ok ke ok kool ok ok sk sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok

DISPLAY_ADDR LDA #'S$'
JSR COUT
LDA DP_MEMORY + 2
JSR PRBYTE
LDA DP_MEMORY+1
JSR PRBYTE
LDA DP_MEMORY
JSR PRBYTE
LDA #>DETAILS_OUT
JSR WRITE_STRING
JSR CROUT
LDA #'$'
JSR COUT
LDA BUF_MEMORY + 2
JSR PRBYTE
LDA BUF_MEMORY+1
JSR PRBYTE
LDA BUF_MEMORY
JSR PRBYTE
LDA #>DETAILS_OUT
JSR WRITE_STRING
JSR HIT
RTS

SHOW THE VALUE IS IN HEX

;**

; NOW CREATE CODE WHICH WILL RELEASE THE CODE
3 Kok o ok ok o ook oK R ok ok o ok ok o ok ok ok ok ok o ok ok ok o ok ok ok K R oK R oK K R R R OR KK

RELEASE_DP EXP
LDA
BEQ
PHA
LDA
PHA

LDX

DP_HANDLE + 2
LABFW

DP HANDLE

#$1002

JSL TOOLS

BCC *+5

JMP ERROR

STZ DP__HANDLE +2
RTS
TMC
EXP
LDA
BEQ
PHA
LDA

LABEL

LABEL
RELEASE_BUF
BUF_HANDLE + 2
LABFW

BUF_HANDLE

- T4 =

RELEASE DP_HANDLE

USE MSB AS RELEASE FLAG

RELEASE BUF__HANDLE

USE MSB AS RELEASE FLAG

THE ASSEMBLER 3.6

PHA

LDX #$1p02

JSL TOOLS

BCC *+45

JMP ERROR

STZ BUF_HANDLE + 2
LABEL RTS
LABEL TMC

o s sk ok s ok e ok ok sk ok ook o ok sk ke K R ook oK ke ok K SR ok R o oK sk ok ok R kR ok o skok ok
; SAME AS A HOME YOU ARE USED TO

;**
HOME PHA
LDA #8C
JSR COUT
PLA
RTS
3 o e s ook ko R ok s ook ok o o ok s ok oK R oo ok ok R R e sk SR K R R o Rk R KK K
; SEND OUT THE VALUE IN THE LEAST SIGNIFICANT
; BYTE OF THE ACCUMULATOR IN ITS HEXADECIMAL NOTATION
4 S 3k 3k ok ok 3k Sk ok 3k ok 3k 3k ok ok ok ok sk sk ok R 3k 3k 3k ok ok ok sk ok ok 3k ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok
PRBYTE STA PRTEMP
AND #SFF GET RID OF MSB FOR NOW
LSR A
LSR A ISOLATE MOST SIGNIFICANT NIBBLE
LSR A
LSR A
CMP #$0A IS DIGIT OR LETTER ?
BCC LABFW
CLC
ADC #807
LABEL ADC #'Q' MAKE IT AN ASCII VALUE
JSR COUT
LDA PRTEMP
AND #$0F
CMP #83$0A
BCC LABFW
CLC
ADC #8017
LABEL ADC #'0'
JSR COUT
LDA PRTEMP RESTORE ORIGINAL VALUE
RTS
; PROGRAM EXECUTION STARTS HERE
START JSR MMSTARTUP INIT MEMORY MANAGER,GET ID
JSR GET_DIR_PAGE GET DIRECT PAGE MEMORY IN BNK ¢
JSR GET_BUFFER GET LARGE BUFFER IN ANY BANK
JSR DISPLAY_ADDR
JSR INIT_SCREEN

=t

3.6

THE ASSEMBLER

JSR
JSR
JSR
BRK

RELEASE_BUF
RELEASE_DP
MMAPPQUIT

310

- 76 -

RELEASE MAIN BUFFER
RELEASE DIRECT PAGE MEMORY
QUIT THIS APPLICATION

THE ASSEMBLER 3.6

Example of a Batch Program

The following batch file can be used to create a Micol Macro system disk
from the master disk supplied to a RAM card with sufficient space in any

slot. The user should make the necessary modifications for his/her own
needs.

Enter the following text using the Corpwell Editor making the necessary
modifications; then save it under any suitable file name. QUIT the editor to
the Monitor/shell and enter BATCH < batch filename<CR>>. The com-
puter will take control.

;NOTE: FORMAT WILL REQUIRE USER INPUT

FORMAT /RAM.DISK

PREFIX /MICOL.MACRO

COPY PRODOS TO /RAM.DISK/PRODOS

CREATE /RAM.DISK/SYSTEM

PREFIX /MICOL.MACRO/SYSTEM

COPY P16 TO /RAM.DISK/SYSTEM/P16

COPY START TO /RAM.DISK/SYSTEM/START

CREATE /RAM.DISK/SYSTEM/SYSTEM. SETUP

PREFIX /MICOL.MACRO/SYSTEM/SYSTEM. SETUP

COPY TOOLS. SETUP TO /RAM.DISK/SYSTEM/SYSTEM. SETUP/TOOLS. SETUP
CREATE /RAM.DISK/SYSTEM/TOOLS

PREFIX /MICOL.MACRO/SYSTEM/TOOLS

; USER MUST DETERMINE WHICH TOOLS HE WISHES TO COPY
COPY TOOL@29 TO /RAM.DISK/SYSTEM/TOOLS/TOOL@2 @
COPY TOOL@22 TO /RAM.DISK/SYSTEM/TOOLS/TOOL@22
PREFIX /RAM.DISK

COPY /MICOL. MACRO/MASTER. FILE TO MASTER.FILE

G Y

3.6 THE ASSEMBLER

APPENDIX B

- SYNTAX DEFINITIONS -

< > enclose a description

[] enclose elements that are optional

/volume.name : = indicate any legal volume.name
sub-directory/ : = indicate any legal sub-directory name
filename : = indicate any legal filename

/prefix/ : = /volume.name/sub-directory1/sub-directory-N/

Spaces are included for clarity.

-

THE ASSEMBLER

3.6

APPENDIX C

- APPLE II MICROPROCESSOR LIST -

This appendix lists the processors used in the entire Apple II series of
computers with approximate beginning and ending of the manufacturing

date of each model.

Model

Apple
Apple
Apple

Apple
Apple
Apple
Apple

i
TI *x*
Ile *

IIe
I1le
Iie
IIGS

Processor

6502
6502
6502

65C02
65C02
65C02
65816

Operating Syst.

DOS 3.2
Dos 3.3
DOS 3.3
ProDOS
ProDOS
ProDOS
ProDOS
ProDOS

Manuf.

April
June
Jan
March
March
March
April
Sept

(i
8
83
84
85
817
84
86

Dates

May
Dec
Feb

Feb

* The Apple Ile Enhancement Kit will update these machines. It will then

have a 65C02 processor and the same ROMs as the Apple Ile enhanced.

** Needs language card to run ProDOS.

- T9 —

79
82
85

87

3.6 THE ASSEMBLER
APPENDIX D
- RESERVED WORDS -
- (PSEUDO OPS) -
- SPECIAL FEATURES-
PSEUDO FIELD COMMENT
<<< op code Beginning of local labels
et op code End of local labels
LABEL label Mark an automatic label
LABBK operand Reference a previous LABEL
LABFW operand Reference a successive LABEL
ABS op code Used to make a table of absolute address
ASC op code Used to declare an ASCII string with a
terminal mark
BYT op code Used to declare byte values within a program
CHN op code Chain the specified program file
E]JT op code Sends a top of form to the printer
ELS op code Perform the opposite of the conditional
assembly operation
EMU op code Specify emulation mode to the CPU and
the assembler
EQU op code Assign the operand value to the label
EXP op code Expand the referenced macro
108 op code Set index register mode to 8 bits
I16 op code Set index register mode to 16 bits
IFF op code Conditional assembly operative
INS op code Include the specified file
LST op code Send assembled listing to screen
LWD op code Generate a 4 byte value for an absolute address
M08 op code Set 8 bit accumulator mode

=B =

THE ASSEMBLER 3.6

Ml6
MAC
NAT
NLT
NPR
ORG
PRG
PRI
RES
STP
STR
TMC
WOR

op code
op code
op code
op code
op code
op code
op code
op code
op code
op code
op code
op code
op code

Set 16 bit accumulator mode

Start a macro declaration

Set 65816 native mode

Stop sending the assembled listing to the screen
Stop sending the assembled listing to the printer
Set PC of assembler, write code to disk

Set PC of assembler, write code to a buffer

Send assembled listing to the printer

Reserve specified number of bytes

Terminate an IFF or ELS pseodo op

Used to declare an Apple ASCII string

Used to terminate a macro definition

Used to declare a 16 bit value in LSB, MSB order

=81 =

3.6 THE ASSEMBLER

APPENDIX E

- EDITOR COMMAND SUMMARY (Alphabetical) -

Hold the OPTION key and press the desired key.

- Copy Block

- Delete Block

- Insert/Overstrike (toggle)
- Find String

- Goto Line

- Convert Hex/Decimal Numbers (toggle)
- Insert/Merge File

- Load File

- Move Block

- Clear Buffer

- Print Range

- Quit to Shell

- Search & Replace

- Save File

- Version Info

- Print Window

- Display End of File Pointer
- Beginning of File

- End of File

- Help Screen

- Page Scroll Up (+)

- Page Scroll Down (-)
TAB - Setting Tabs

LVORNG<n RO ZZO~TIOTNHY O

«—

= 82 =

THE ASSEMBLER 3.6

APPENDIX F: Shell/Monitor Command

Summary

Command Description

ASSM <pathnm>
BATCH <pathnm>
BLOAD <pathnm>

BRUN <pathnm>
CATALOG <pathnm>
CONTROL-Y<CR>
COPY

CREATE <pathnm>
DELETE <pathnm>
EDIT [<pathnm>]

FORMAT <Volume>
HELP

HOME

LIST <pathnm>
LOCK <pathnm>
ONLINE

PREFIX <Pathnm>

QUIT
RENAME
UNLOCK <pathnm>

Assemble the stipulated file

Perform monitor/shell commands from a text file
Load the stipulated MCL file, BRK to the
GS monitor

Load and execute the stipulated MCL file
List the specified directory

Return to Monitor/Shell from monitor
<filel> to <file2>

Create a directory file withthe name <pathname>
Delete stipulated file from the directory
Invoke the text editor. If stipulated, load
<pathname> to edit

Initialize specified volume

Display the monitor/shell commands

and descriptions

Clear the screen, home the cursor

List the stipulated text file to the screen
Protect the stipulated file

Display all online volumes

Set or determine default

prefix

Perform a ProDOS 16 quit

<filel> to <file2>

Unprotect the stipulated file

=

3.6 THE ASSEMBLER

APPENDIX G: IIGS Monitor Usage

This is a summary of the most used APPLE IIGS system monitor commands.
For more detailed information reference APPLE IIGS technical reference
manual ISBN 0-07-881009-4 published by OSBORNE McGRAWHILL.

This is a example of how an address is input to the monitor.
The 12/ sets the program bank to 12 HEX.
The 34FF portion is the address within the 12th bank accessed.

Example:

*¥12/34FF Return

DISASSEMBLE LIST
Follow the address with a capital L.

(/12341 Return will give a disassembly listing starting at address 1234
in bank @ for the length of one screen.

Example:
*@/1234L Return

Entering ‘L’ Return will continue the display.

DISPLAY MEMORY (DUMP)
Displays memory as from 100 to 200 in bank 0.

Example:

*@/100. 200 Return

MODIFY CONSECUTIVE MEMORY

Key the address followed by a colon or semicolon then data. The exam-

_ 84 —

THE ASSEMBLER 3.6

ple below will modify bank 2 locations 0000, 0001 and 0002
respectively. ‘

Example:

*2/0000: A5 BB 09 Return

EXECUTE (GO)

To execute a program in memory enter the bank and address

Example:

*¥3/0010X Return

STEP (Not yet supported)

To step the program one instruction at a time enter S after the address.

Example:

*4/0010S Return

TRACE (Not yet supported)
To run a program in TRACE enter T after the address.

Example:

*5/0040T Return

CHANGING REGISTERS

Note: Characters used are case sensitive !

CHANGE (A) REGISTER (va)=A
CHANGE (X) REGISTER (val)=X
CHANGE (Y) REGISTER (vaD=Y
CHANGE (D) REGISTER (val)=D

— 85 —

3.6

THE ASSEMBLER

CHANGE DATA BANK REGISTER
CHANGE PROGRAM REGISTER

(va)=B
(va)=K

CHANGE STACK POINTER (val)=§
CHANGE PROCESSOR STATUS (val)=P

CHANGE MACHINE STATE (val)

=M

CHANGE QUAGMIRE STATE (val)=Q

CHANGE ACCUMULATOR MODE
CHANGE INDEX MODE (val)=x
CHANGE EMULATION MODE (v
CHANGE LANGUAGE CARD BANK

= 88 -

(val)=m

a)=e

(val)=L

THE ASSEMBLER 3.6

GLOSSARY

6502 ADDRESSING FORMAT: Two byte addresses specified in least sig-
nificant byte, most significant byte order.

6502 MICROPROCESSOR: CPU used in the Apple Ile, Apple][plus and
Apple][.
65C02 MICROPROCESSOR: CPU used in the enhanced Apple Ile, new

Apple Ile, and Apple Ilc, software written for the 6502 will run on it. This
chip has 27 additional machine language instructions.

65816 MICROPROCESSOR: CPU used in the Apple IIGS and Apple Ile
Upgraded GS, software written for the 6502 and 65C02 will run on it.

ABSOLUTE ADDRESSING: Generally refers to addresses greater than
$00FF (255) and less than $10000.

ALPHANUMERIC: Usually used to describe characters which consist of let-
ters of the alphabet and digits.

ASCII code: ASCII is the acronym for American Standard Code for Informa-
tion Interchange. A standardized code used to represent letters, digits and
punctuation symbols. Apple uses this code but sets the most significant bit
when used under DOS 3.3. The capital letter A is 65 (decimal) in the code.

ASSEMBLER: A program which can take as input an assembly language
text file and translate it into the binary code the computer can execute. It usu-
ally gives additional information.

ASSEMBLY SOURCE CODE: A formatted text file an assembler can pro-
cess into binary code.

ASSEMBLY LANGUAGE: The lowest programming language, specific to
a given microprocessor, that uses short mnemonics corresponding directly to
machine instructions and that allows a programmer to use symbolic code. At
this level, the programmer is directly programming the CPU.

BINARY CODE: A numbering system consisting only of zeroes and ones
(base 2).

- BT =

3.6 THE ASSEMBLER

BINARY FILES: Machine language programs saved on disk or tape.

BIT: Acronym of Binary digit. The smallest unit of information in a com-
puter that can be represented by a zero or a one.

BRANCHING: Causes the program to begin execution at another memory
location. The 65816 use relative addressing with branching. See JUMP.

BREAK POINT: Used in machine language debugging. When executed, it
will cause the system to dump all registers, flags and counters and halt execu-
tion. The binary code on the 65816 is a zero (0).

BYTE: A collection of bits wired together. In most cases, a byte consist of
eight bits. A byte can represent a character.

CPU: Stands for Central Processing Unit, the “brain” of the computer.
When writing in machine language, you are actually programming the CPU.

CHAINING: The process of linking separate text files by the compiler. The
compiler can successfully compile separatc text files, as though they were a
whole program.

COMPILER: A program that converts a program, usually a text file, written
in a high-level language into either machine code or assembly language

CONTROL PANEL: A ROM based ancillary program that controls the
functioning of slot and ports of the Apple IIGS.

CURSOR: A special character, often blinking, used to show the user where
he will be entering characters on the screen.

DECIMAL: A numbering system based on the number 10. The numbering
system we use in everyday life.

DIRECT ADDRESSING: Consists of either direct page addressing or abso-
lute addressing.

DISASSEMBLER: A program which takes the binary numbers stored in the
computer and translates then into assembly-like code.

EDITOR: A program which allows the user to create, modify and save text
files.

— 88 —

THE ASSEMBLER 3.6

FLAG: A boolean variable which can be set, so that later a determination can
be made based on its value.

FILE: A collection of data stored in some memory device. This can be the
computer’s memory, a disk or a tape. On magnetic media, a file name is usu-
ally associated with the file.

HEXADECIMAL: A number system based on the number 16 (base 16).
Numbers 0 through 9 and letters A through F are used. The letters represent
decimal numbers 10 through 15.

IMMEDIATE ADDRESSING: Addressing mode in which the byte(s) fol-
lowing the op code contains the value to be used. LDA #$F0 will cause the
accumulator to load an $F0 value.

INCLUDING: Inserting a file contained on disk as if it were physically sit-
ting at the include statement. IN'S is this system’s include reserved word.

INDIRECT ADDRESSING: Addressing mode in which the specified
address contains the address which will be used.

JUMP: Causes the program to begin execution at the specified location. Var-
ies from branch in that it uses absolute rather than relative addressing.

LABEL: Used in assembly and most higher level languages to allow the pro-
grammer to reference a part of the program. In assembly language, the label
will stand for an address in memory.

LOAD: The act of bringing information from some long-term storage device
such as disk to the computer’s memory.

MACHINE CODE: Almost synonymous with assembly code. Usually refers
to the binary code which the computer directly executes.

MACRO: In assembly language, a segment of text which can be later refer-
enced and thereby inserted as part of the code. Usually accepts parameters.

MCL FILES: Static or relocatable load files generated by the Micol Macro™
assembler.

MEMORY LOCATION: The same as a byte. Can be thought of as a little
box in the computer containing a piece of information.

- 0

3.6 THE ASSEMBLER

MEMORY MANAGER: A ROM based program that supervises the use of
the computer’s memory.

MICOL SYSTEMS: A dynamic software house founded almost simultane-
ously in Southern California and Ontario, Canada in 1983. Dedicated to qual-
ity systems software, MICOL is the acronym of Micro Computer Languages.

MNEMONIC: A collection of characters which can help you remember
something. ‘JMP’ stands for jump and represents $4C in machine code and is
a mnemonic for it.

MODULARIZATION: The act of breaking your program into small, easily
maintainable parts. While little overhead is involved, it greatly minimizes the
maintenance costs.

MONITOR: A program which interfaces the human with the machine code
in his computer.

MONITOR/SHELL: The human interface portion of Micol Macro®.,

OCTAL: A number system based on the number 8 (base 8). Digits 0 through
7 are used. A 10 in octal is decimal 8.

OP CODE: Short for operation code, the second field in a 6502/65C02, 65816
assembly line which instructs the CPU what action to take.

OPERAND: The address field following the op code.
PASS 1: In an assembler, the phase in which all addresses are resolved.
PASS 2: In an assembler, the phase in which the code is generated.

PROGRAM: A collection of instructions designed to perform (a) specific
action(s).

PSEUDO OP CODE: Instructions which resemble operation codes, but are
usually designed to instruct the assembler what action to take.

RADIX: The base value of a numbering system. The radix of the decimal
system is 10.

REGISTERS: Memory locations within the CPU having special features not

- 90 —

THE ASSEMBLER 3.6

found in memory. Without registers, your computer would be worthless. In
the 6502/65C02 microprocessor, the 5 registers are:

A accumulator — virtually all mathematics are performed here.

X register — mainly used for indexing

Y register — mainly used for indexing

Status register — condition flags based upon certain operations are kept here
Stack pointer — points to location in page one

The 65816 has additional registers. They are:

Data Bank Register: The bank number from which data is usually accessed.
Program Bank Register: The bank portion of the program counter.

Direct Page Register: The 16 bit register which points to the beginning of
direct page.

Accumulator B: The MSB of the 16 bit accumulator.

In addition, there are the memory select and index register select bits in the
status register as well as a shadow emulation bit.

SAVE: The act of storing all or part of a computer’s memory to some long-
term storage device.

STATUS FLAGS: Bits within the status register which are set or unset by
certain conditions. The status flags in the status register are: zero, sign, mem-
ory select, decimal, index register select, interrupt, overflow, break and
carry. All “decisions” are based upon the status (0 or 1) of these flags.

STRING: A collection of characters. The ‘STR’ pseudo op is used by the
Micol Systems’ assembler to declare strings, e.g. ‘THIS IS A STRING’.

STRUCTURED PROGRAMMING: A systematic approach to the creation
of software by using a step-by-step procedure for solving the problem. It con-
sists of a smooth program flow, modularization of code, etc.

TOGGLE: To change state from on to off and back again.

- OF =

3.6 THE ASSEMBLER

ZERO PAGE: The area in memory between locations @ and 255 in bank
zero. The zero page is extended to direct page on the 65816 and can occupy
256 bytes anywhere in bank 0.

P b

THE ASSEMBLER

3.6

INDEX

A

ABS pseudoop 37, 39, 80
Address field 30, 33-34
Addressing modes 53
absolute 33, 41, 54
absolute indexed 55
absolute indexed indirect 59
absolute indirect 58
absolute long 60
accumulator 53
direct page 33, 37,54, 55
direct page indexed 55
direct page indirect 57
direct page indirect long 60
immediate 53,55
implied 56
indexed absolute 55
indexed indirect 57
indirect indexed 58
relative long 57
relative short 56
stack absolute 59
stack direct page indirect 61
stack program counter relative 61
stack relative 61
stack relative indirect indexed 62
APPLE key 13
Apple Ile iii, v, vii, 13
Arrow keys 15
ASC pseudoop 38, 80
Assembler 27, 87
ASSM 2, 27,66, 83

=93 -

3.6 THE ASSEMBLER

Automatic label generation

Backward label, see LABBK.
Bank, memory 48, 60-61
Bank zero ix, x, 30, 41, 55
Batch 2,77,83
BIN type file vi
Binary notation 34
BLOAD 3,66, 83
BLOCK COPY 17,25
BLOCK MOVE 17,25
Break point see BRK
BRK 4,29,52
BRUN 3,83
Buffer,
overflow 19, 64-65
macros 44
editor 19,26
BYT pseudoop 38, 80

CATALOG 3,83

CHN pseudoop 45, 46, 80

Clock 12

Closed-Apple key, see OPTION key
Comment field 30, 35

Comment lines 30

Conditional assembly 47
Configuring your printer 22
CONTROL-C 2,6,21
CONTROL-R 1

-0 -

THE ASSEMBLER

3.6

CONTROL-S 1,6,21
CONTROL-X
CONTROL-Y 4,83
Control Panel 12, 15, 22, 23

Conversion, decimal and hexadecimal 24

COPY 4,83

Copy block 17
CREATE 4,83
Current filename 10
Cursor, moving 15

DEA 53

Decimal to Hex Conversion 24
DELETE 4, 14,83

DELETE block 17,25
DELETE key 1,14

Direct Page Addressing, see Addressing modes, direct page.

Direct Page register x, 58
Directory 3, 83

EDIT 5,9,83
Editor 9, 89
Edit buffer 19
E]JT pseudoop 44, 80
ELS pseudoop 47, 80
EMU pseudoop 49, 80
EOF marker 20
Emulation mode,
switching to native from 48
EQU pseudoop 36, 48, 80

= P&

3.6 THE ASSEMBLER

Error messages,
assembler 64
ESCAPE key 13
Example program 67
Exit to Shell 9
EXP pseudo op 42, 43, 46, 80

F
FIND String 18, 25
FORMAT 5,77
Forward label, see LABFW

G
Global label, see Label, global

H

HELP
Editor 13,25
Monitor/Shell 5, 83
Hexadecimal 24, 89
Hex to Decimal Conversion 24
High-order,
bit 34
byte 34
HOME 6,83
How to assemble 66

- 96 —

THE ASSEMBLER

3.6

I

108 pseudoop 49, 80

116 pseudoop 49, 80

IFF pseudoop 47, 80
Immediate addressing 50, 51, 53
INS pseudoop 46, 80

Index registers 50

INSERT 13

Insert file 20

JMP
absolute 33, 59
long 33

JSR
absolute 33
long 33

LABEL 29

Label, generation 31
Label, global 32
Label, local 32
LABBK label 31,80
LABFW label 31, 80
Least significant byte 34
Line counter 11
LIST 6,83
LOADfile 19,25
LOCK 6,83

W s

3.6 THE ASSEMBLER

Long addressing 33, 60
Low-order 34

LST pseudoop 27, 44, 80
LWD pseudoop 39, 80

M08 pseudoop 51, 80
M16 pseudoop 51, 80
MAC pseudoop 43, 81
Machine language Monitor 84
Macros,

definition 43

expansion 64
MASTER.FILE viii, ix
MCL file wiii, 2,41, 89
Memory available,

editor 10

macro buffer 64
Memory Manager x, 29, 41, 90
Mnemonic field 30, 33
Mnemonics 33
Mode,

8-bit 34,52

16-bit 34,52
Monitor/Shell wiii, ix, 1, 66, 83, 90
Most significant byte 33, 37, 40

NAT pseudoop 51,52, 81
Native mode, 52

switching to emulation 49
NLT pseudoop 44, 81

- 98 _

THE ASSEMBLER

3.6

NPR pseudoop 45, 81

ONLINE 6,83

Op code field 32, 33, 53,90

Operand field 30, 33-34

Operating system commands, see Monitor/Shell.
OPTION key 13,25

ORG pseudoop 27, 28, 41, 66, 81

Overflow error 64

Overstrike mode 13, 25

Page scrolling 15, 25
Passes 27
PRG pseudoop 42, 65, 66, 81
PREFIX 6, 83
PRI directive 27,45, 83
Printing,
configuring 22
editor line ranges 21
listing 45
editor screen contents 21
ProDOS 8 vii
ProDOS 16 vii, viii
Program counter 37,41, 56
Pseudo op codes 36

— 99 _

3.6 THE ASSEMBLER

Q

Quit to shell 9, 26,77, 82
QUIT 7,83

RAMcards v,77
RAMdisk v,2,5
Relative long 57

Relative short 56
Relocatable file 27, 37,41
RENAME 7,83

RES pseudoop 29, 37, 81
Returnkey 1,13

SAVEfile 19,25
Scale 11

Screen 10

Scrolling 15

SEARCH and replace 18, 25
Space(s) 30, 35, 39, 40
stack register 61

START viii

STP pseudoop 47, 48, 81
STR pseudoop 40, 81
Switching between native and

emulation modes 49

Switching register size 50
Symbol table 27

Symbol table dump 65

- 100 -

THE ASSEMBLER

3.6

Symbuolic labels, see Labels
Syntax 78

SYS type file vi, 27,41
SYSTEM.LOADER wiii, ix, x

¢

Tabulation, 15
defaults 16

TMC pseudoop 44, 81
TXT typefile 5,6

U
UNLOCK 7,83

A%
WOR pseudo op 40, 81
Work disk ix

Z

Zero page 54,55

- 101 -

3.6 THE ASSEMBLER

Special Characters

plussign 34

- minus sign 34

. multiply 34

/ divide 34

_underline character 28, 30

.Bsuffix 2,46

28,32,34,53,65

$ 24,34

% 34

< 28,34,60

> 28, 34,54, 55,65

<<<32, 80

>>>32, 80

1. 2,30

‘ single quote 34, 38, 40
31,34

s,comma 2

- 102 -

